30 November 2019
whoami
= DONEimport * as tf from '@tensorflow/tfjs-core';
# Python import tensorflowjs as tfjs def train(...): model = keras.models.Sequential() # for example #... model.fit(...) tfjs.converters.save_keras_model(model, tfjs_target_dir) # JS import * as tf from '@tensorflow/tfjs'; const model = await tf.loadModel('https://foo.bar/tfjs_artifacts/model.json'); const example = tf.fromPixels(webcamElement); // for example const prediction = model.predict(example);
See the keras→js tutorial
<script src="https://unpkg.com/ml5@0.4.3/dist/ml5.min.js"></script> // Step 1: Create an image classifier with MobileNet const classifier = ml5.imageClassifier('MobileNet', onModelReady); // Step 2: select an image const img = document.querySelector("#myImage") // Step 3: Make a prediction let prediction = classifier.predict(img, gotResults); // Step 4: Do something with the results! function gotResults(err, results) { console.log(results); // all the amazing things you'll add }
See all the tutorials
word2vec
embeddingsface-api.js
:https:// reddragon.ai / demo / faces
https:// reddragon.ai / demo / faces
https:// reddragon.ai / demo / faces
https:// reddragon.ai / demo / faces
https:// reddragon.ai / demo / faces