Relationships from Entity Stream

Martin Andrews

martin@RedDragon.ai

Sam Witteveen sam@RedDragon.ai

Summary

Task :

▲ Q&A about relationships between objects in an image (Sort-of-CLEVR)

Inspiration :

A Relation Network paper

Model Comparison

Idea :

- Focus attention on entities in image
- ▲ Stream relevant entities
- ▲ Learn relationships from stream

Results :

Similar accuracy to previous work

Qualitative Advantages :

- Only entities are reasoned about
- ▲ Greater interpretability
- **Fewer parameters**
- End-to-end trainable grounding

Source Code with Data Generator :

Available via GitHub :

https://github.com/mdda/ relationships-from-entity-stream

Model Detail

Input CNNs :

▲ 4 layers, 3x3 conv 24 channels + BN

Question & Answer :

- Pre-encoded as 11d & 10d binary
- ▲ Q:[r, g, b, o, k, y, q1, q2, s1, s2, s3]
- ▲ A:[yes, no, rect, disc, 1, 2, 3, 4, 5, 6]

Entity Finder RNN :

- ▲ 2-layer GRU, 32/64 hidden dims
- Output is query 'q' for attending
- Found 'entities' input to next timestep

Attention-is-all-you-need :

Concatenate location to CNN output ▲ Split into 'k' and 'v' pieces

Results

Quantitative

Model	NonRel fraction correct	BiRel fraction correct	hidden_dim	Size in bytes
RN	99%	93%	-	1,463,513
CNN	$98\%^*$	63%	-	970,874
Our RFES-S	99%	95%	32	166,380
Our RFES-H	[99%	93%	64	408,364

Qualitative

Discussion

Motivation :

- Avoid comparing all locations pairwise
- Want sequential reasoning
- Potential to mix & match streams

SoftMax Attention :

- Works quickly, more robust
- Capable of 'cheating' by snapshotting
 - entity scene (e.g. to count)

Hard Attention :

- Some tuning required (larger GRU)
- ▲ Gumbel has self-scaling property
- Training still fully differentiable

- \blacktriangle Soft attention : weighted 'v' as entity
- ▲ Gumbel trick to learn hard attention

Relationship Finder RNN :

- \blacktriangle Inputs are entities ('v' from attention)
- ▲ 2-layer GRU, 32/64 hidden dims
- Answer from last hidden state

Testing explicitly 'ArgMax hard'

Future directions :

- Small-RL and attention games
- Revisit MNIST by saccades
- Other uses of 'internal dialogue'

Key References

"A simple neural network module for relational reasoning" - Santoro et al. (2017)

"Attention is all you need" - Vaswani et al. (2017)

"The symbol grounding problem" - Harnad (1990)

