
Keras Core
Keras for TensorFlow, JAX, and PyTorch



About Me

● Google Developer Expert for Machine Learning 
and Deep Learning (2017-)

● Deep Learning R&D :
○ Language & Dialogue systems
○ Generative Models
○ Text-to-Speech 

● MeetUp Co-organiser: 
○ "Machine Learning Singapore"

Martin Andrews

2



About Red Dragon AI

3

● Founded 2017

● Google Partner

● Consulting, Prototyping & Building

● Research - NeurIPS, EMNLP, COLING, NAACL

● Interactive Digital Personas 



Why Keras?



Why do we need a framework?

● Neural Networks consist of Layers
○ Need a library of different layer types
○ Need a way of connecting them together

● But also need lots of other machinery:
○ Handle training phase, including metrics and visualisation
○ Interface with Accelerators (GPUs, TPUs)
○ Data loaders that move the data efficiently
○ Handle inference (production) phase

● Two main camps : Google (TensorFlow, JAX, Keras) & PyTorch
○ The 'race' is becoming more interesting…



Why Keras?

● Great developer experience
○ Consistent and simple APIs
○ Used by 2.5+ million developers

● Large ecosystem
○ KerasNLP, KerasCV, KerasTuner
○ TensorFlow Recommenders
○ etc

● Easy to turn models ↣ products
○ Can deploy across a greater range of 

platforms than other deep learning 
frameworks

○ TF Serving, tf.js, TFlite

https://keras.io/getting_started/ecosystem/


What's new in Keras Core?



Multi-backend Keras is back

● Full rewrite of Keras
○ Now only 45k loc instead of 135k

● Support for TensorFlow, JAX, PyTorch, NumPy backends
○ NumPy backend is inference-only

● Drop-in replacement for tf.keras when using TensorFlow backend
○ Just change your imports!





Develop cross-framework components with keras.ops

● Includes the NumPy API – same functions, same arguments.
○ ops.matmul, ops.sum, ops.stack, ops.einsum, etc.

● Plus neural network-specific functions absent from NumPy
○ ops.softmax, ops.binary_crossentropy, ops.conv, etc.

● Models / layers / losses / metrics / optimizers written with Keras APIs 
work the same with any framework

○ They can even be used outside of Keras workflows!







Seamless integration with backend-native workflows

● Write a low-level JAX training loop to train a Keras model
○ e.g. optax optimizer, jax.grad, jax.jit, jax.pmap…

● Write a low-level TensorFlow training loop to train a Keras model
○ e.g. tf.GradientTape & tf.distribute.

● Write a low-level PyTorch training loop to train a Keras model
○ e.g. torch.optim optimizer,  torch loss function, 

torch.nn.parallel.DistributedDataParallel

● Use a Keras layer or model as part of a torch.nn.Module.
○ PyTorch users can start leveraging Keras models whether or not they use Keras APIs! 

You can treat a Keras model just like any other PyTorch Module.

● etc.



Writing a custom training loop for a Keras model



Advantages of Keras Core



● Support for cross-framework data pipelines

● Pretrained models

● Progressive disclosure of complexity

● Introduces new stateless API for pure functional programming

● Distributed training as easy as non-distributed training

Advantages of Keras Core?



● Support for cross-framework data pipelines
○ tf.data.Dataset

○ torch.utils.data.DataLoader
○ Numpy arrays

○ pandas dataframes

○ PyDatasets

● Pretrained models

● Progressive disclosure of complexity

● Introduces new stateless API for pure functional programming

● Distributed training as easy as non-distributed training

Advantages of Keras Core?



● Support for cross-framework data pipelines

● Pretrained models
○ Out of the box integration with KerasNLP and KerasCV

● Progressive disclosure of complexity

● Introduces new stateless API for pure functional programming

● Distributed training as easy as non-distributed training

Advantages of Keras Core?



Pretrained models

Keras Core includes all Keras Applications (popular image classifiers)

KerasCV and KerasNLP work out of the box with Keras Core and all 
backends as of the latest releases

● YOLOv8
● Whisper
● BERT
● OPT
● etc.



● Support for cross-framework data pipelines

● Pretrained models

● Progressive disclosure of complexity
○ Start simple

○ Customize as per your needs

○ Go from Sequential/Functional to custom train_step to custom loops 

in no time

● Introduces new stateless API for pure functional programming

● Distributed training as easy as non-distributed training

Advantages of Keras Core?



Progressive disclosure of complexity

● Start simple, then gradually gain arbitrary flexibility …
○ … by "opening up the box"

● Example: model training
○ fit → callbacks → custom train_step → custom training loop

● Example: model building
○ Sequential → Functional → Functional with custom layers → subclassed model

● Makes Keras suitable for students AND for Waymo engineers





● Support for cross-framework data pipelines

● Pretrained models

● Progressive disclosure of complexity

● Introduces new stateless API for pure functional programming

● Distributed training as easy as non-distributed training

Advantages of Keras Core?



Stateless API (advanced)

● All Keras Core objects that have 'state' …
○ … also have a stateless API
○ So : Can use them in JAX functions

● Example :
○ outputs, updated_non_trainable_variables = layer.stateless_call(
○     trainable_variables,
○     non_trainable_variables,
○     inputs,
○ )

● This interface is created automatically from stateful version
● Enables use as a high-level JAX interface



● Support for cross-framework data pipelines

● Pretrained models

● Progressive disclosure of complexity

● Introduces new stateless API for pure functional programming

● Distributed training as easy as non-distributed training

○ Ehhh…  Distributed training is always painful

○ Keras Core now integrates JAX distributed training

Advantages of Keras Core?



Cloud TPU - v5 with optical interconnects

https://cloud.google.com/blog/products/compute/announcing-cloud-tpu-v5e-and-a3-gpus-in-ga


JAX distributed 
computation in  
Keras Core
● Can specify :

○ Data parallelism
○ Model parallelism

● Make most of TPU 
infrastructure

https://twitter.com/fchollet/status/1698767219168288781


Wrapping up



Keras = future-proof stability

If you were a Theano user in 2016, you had to migrate to TF 1…

… but if you were a Keras user on top of Theano, you got TF 1 nearly for free

If you were a TF 1 user in 2019, you had to migrate to TF 2…

… but if you were a Keras user on top of TF 1, you got TF 2 nearly for free

If you are using Keras on top of TF 2 in 2023…

… you get JAX and PyTorch support nearly for free

And so on going forward (Mojo next?)

Frameworks are transient, Keras is your rock.



Why Keras Core?

● Maximize performance
○ Pick the backend that's the fastest for your particular model
○ Typically, PyTorch < TensorFlow < JAX (by 10-20% jumps between frameworks)

● Maximize available ecosystem surface
○ Export your model to TF SavedModel (TFLite, TF.js, TF Serving, TF-MOT, etc.)
○ Instantiate your model as a PyTorch Module and use it with the PyTorch ecosystem
○ Call your model as a stateless JAX function and use it with JAX transforms

● Maximize addressable market for your OSS model releases
○ PyTorch, TF have only 40-60% of the market each
○ Keras models are usable by anyone with no framework lock-in

● Maximize data source availability
○ Use tf.data, PyTorch DataLoader, NumPy, Pandas, etc. – with any backend



Resources

● Keras Core Announcement

● Introduction to Keras Core with Francois Chollet | PyImageSearch | LiveStream

● Keras Core developer guides

● PyImageSearch annotated example

https://keras.io/keras_core/announcement/
https://www.youtube.com/watch?v=_5fTPEoeFZk
https://keras.io/keras_core/guides/
https://pyimagesearch.com/2023/07/24/what-is-keras-core/


Questions



Aritra Roy Gosthipaty
ML GDE
@ariG23498

Aakash Kumar Nain
ML GDE
@A_K_Nain

Slides included contributions from :

Francois Chollet
Keras Founder
@fchollet


