Keras Core

Keras for TensorFlow, JAX, and PyTorch

About Me

- Google Developer Expert for Machine Learning and Deep Learning (2017-)
- Deep Learning R&D :
 - Language & Dialogue systems
 - Generative Models
 - Text-to-Speech
- MeetUp Co-organiser:
 - "Machine Learning Singapore"

Martin Andrews

About Red Dragon Al

- Founded 2017
- Google Partner
- Consulting, Prototyping & Building
- Research NeurIPS, EMNLP, COLING, NAACL
- Interactive Digital Personas

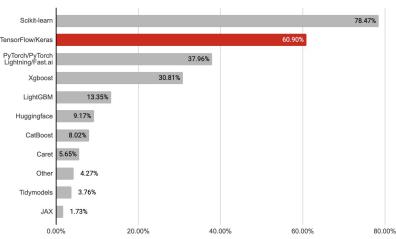
Why Keras?

Why do we need a framework?

- Neural Networks consist of Layers
 - Need a library of different layer types
 - Need a way of connecting them together
- But also need lots of other machinery:
 - Handle training phase, including metrics and visualisation
 - Interface with Accelerators (GPUs, TPUs)
 - Data loaders that move the data efficiently
 - Handle inference (production) phase
- Two main camps : Google (TensorFlow, JAX, Keras) & PyTorch
 - The 'race' is becoming more interesting...

Why Keras?

- Great developer experience
 - Consistent and simple APIs
 - Used by 2.5+ million developers
- Large ecosystem
 - KerasNLP, KerasCV, KerasTuner
 - TensorFlow Recommenders
 - <u>etc</u>
- Easy to turn models → products
 - Can deploy across a greater range of platforms than other deep learning frameworks
 - TF Serving, tf.js, TFlite



2022 Machine Learning & Data Science Survey by Kaggle: library usage (N=14,531)

What's new in Keras Core?

Multi-backend Keras is back

- Full rewrite of Keras
 - Now only 45k loc instead of 135k
- Support for TensorFlow, JAX, PyTorch, NumPy backends
 - NumPy backend is inference-only
- Drop-in replacement for **tf.keras** when using TensorFlow backend
 - Just change your imports!

•••

```
import keras_core as keras
```

```
model = keras.Sequential([
    keras.layers.Input(shape=(num_features,)),
    keras.layers.Dense(512, activation="relu"),
    keras.layers.Dense(512, activation="relu"),
    keras.layers.Dense(num_classes, activation="softmax"),
])
```

```
model.summary()
```

```
model.compile(
```

```
optimizer=keras.optimizers.AdamW(learning_rate=1e-3),
loss=keras.losses.CategoricalCrossentropy(),
metrics=[
    keras.metrics.CategoricalAccuracy(),
    keras.metrics.AUC(),
```

```
],
```

```
history = model.fit(
    x_train, y_train, batch_size=64, epochs=8, validation_split=0.2
)
evaluation_scores = model.evaluate(x_val, y_val, return_dict=True)
predictions = model.predict(x_test)
```

\$ python example.py Using TensorFlow backend

\$ python example.py
Using PyTorch backend

\$ python example.py
Using JAX backend

Develop cross-framework components with keras.ops

- Includes the **NumPy API** same functions, same arguments.
 - ops.matmul, ops.sum, ops.stack, ops.einsum, etc.
- Plus neural network-specific functions absent from NumPy
 - ops.softmax, ops.binary_crossentropy, ops.conv, etc.
- Models / layers / losses / metrics / optimizers written with Keras APIs work the same with any framework
 - They can even be used outside of Keras workflows!

Develop custom components that work with **any framework** using keras.ops (which includes the NumPy API)

...

```
. .
```

import keras_core as keras
from keras_core import ops

class TokenAndPositionEmbedding(keras.Layer): def __init__(self, max_length, vocab_size, embed_dim): super().__init__() self.token embed = self.add weight(shape=(vocab_size, embed_dim), initializer="random_uniform", trainable=True, self.position_embed = self.add_weight(shape=(max length, embed dim), initializer="random uniform", trainable=True, def call(self, token ids): # Embed positions length = token ids.shape[-1]positions = ops.arange(0, length, dtype="int32") positions_vectors = ops.take(self.position_embed, positions, axis=0) # Embed tokens token_ids = ops.cast(token_ids, dtype="int32") token vectors = ops.take(self.token embed, token ids, axis=0) # Sum both embed = token_vectors + positions_vectors # Normalize embeddings power_sum = ops.sum(ops.square(embed), axis=-1, keepdims=True) return embed / ops.sqrt(ops.maximum(power_sum, 1e-7))

....

import torch

class TokenAndPositionEmbedding(keras.Layer):

```
def call(self, token_ids):
    # Embed positions
    length = token ids.shape[-1]
    positions = torch.arange(0, length, dtype=torch.int32)
    position embed = self.position embed.value
    positions vectors = torch.nn.functional.embedding(positions, position embed)
    # Embed tokens
    token_ids = token_ids.int()
    token_embed = self.token_embed.value
    token vectors = torch.nn.functional.embedding(token ids, token embed)
    # Sum both
    embed = token_vectors + positions_vectors
    # Normalize embeddings
    power_sum = torch.sum(torch.square(embed), axis=-1, keepdim=True)
    return embed / torch.sqrt(torch.maximum(power_sum, torch.as_tensor(le-7)))
```

...

or use your framework of choice for backend-specific components

0 0 0

import jax

class TokenAndPositionEmbedding(keras.Layer):

def call(self, token_ids): # Embed positions length = token_ids.shape[-1] positions = jax.numpy.arange(0, length, dtype="int32") positions vectors = jax.numpy.take(self.position embed, positions, axis=0) # Embed tokens token_ids = token_ids.astype("int32") token_vectors = jax.numpy.take(self.token_embed, token_ids, axis=0) # Sum both embed = token_vectors + positions_vectors # Normalize embeddings power_sum = jax.numpy.sum(jax.numpy.square(embed), axis=-1, keepdims=True) return embed / jax.numpy.sqrt(jax.numpy.maximum(power sum, 1e-7))

import tensorflow as tf

class TokenAndPositionEmbedding(keras.Layer):

def call(self, token ids):

Embed positions length = token ids.shape[-1] positions = tf.range(0, length, dtype="int32") positions_vectors = tf.nn.embedding_lookup(self.position_embed, positions) # Embed tokens token ids = tf.cast(token ids, "int32") token_vectors = tf.nn.embedding_lookup(self.token_embed, token_ids) # Sum both embed = token vectors + positions vectors # Normalize embeddings power_sum = tf.reduce_sum(tf.square(embed), axis=-1, keepdims=True) return embed / tf.sqrt(tf.maximum(power_sum, 1e-7))

Seamless integration with backend-native workflows

- Write a low-level JAX training loop to train a Keras model
 e.g. optax optimizer, jax.grad, jax.jit, jax.pmap...
- Write a low-level TensorFlow training loop to train a Keras model
 - e.g. tf.GradientTape&tf.distribute.
- Write a low-level PyTorch training loop to train a Keras model
 - e.g. torch.optim optimizer, torch loss function, torch.nn.parallel.DistributedDataParallel
- Use a Keras layer or model as part of a torch.nn.Module.
 - PyTorch users can start leveraging Keras models whether or not they use Keras APIs!
 You can treat a Keras model just like any other PyTorch Module.
- etc.

••••

model = get_keras_core_model()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
loss_fn = torch.nn.CrossEntropyLoss()

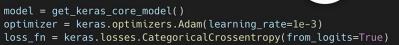
```
def train_step(inputs, targets):
    # Compute loss.
    logits = model(inputs, training=True)
    loss = loss_fn(logits, targets)
```

Compute gradients.
model.zero_grad()
loss.backward()

Update weights.
optimizer.step()
return loss

Iterate over epochs.
for epoch in range(num_epochs):
 # Iterate over the batches of the dataset.
 for step, (inputs, targets) in enumerate(dataset):
 loss = train_step(inputs, targets)
 print(f"Loss: {loss.detach().numpy():.4f}")

• • •



@tf.function(jit_compile=True)
def train_step(inputs, targets):
 # Compute loss.
 with tf.GradientTape() as tape:
 logits = model(inputs, training=True)
 loss = loss_fn(targets, logits)

Compute gradients.
gradients = tape.gradient(loss, model.trainable_weights)

Update weights.
optimizer.apply(gradients, model.trainable_weights)
return loss

Iterate over epochs.
for epoch in range(num_epochs):
 # Iterate over the batches of the dataset.
 for step, (inputs, targets) in enumerate(dataset):
 loss = train_step(inputs, targets)
 print(f"Loss: {loss.numpy():.4f}")

Writing a custom training loop for a Keras model

- Support for cross-framework data pipelines
- Pretrained models
- Progressive disclosure of complexity
- Introduces new stateless API for pure functional programming
- Distributed training as easy as non-distributed training

- Support for cross-framework data pipelines
 - tf.data.Dataset
 - torch.utils.data.DataLoader
 - Numpy arrays
 - pandas dataframes
 - PyDatasets
- Pretrained models
- Progressive disclosure of complexity
- Introduces new stateless API for pure functional programming
- Distributed training as easy as non-distributed training

- Support for cross-framework data pipelines
- Pretrained models
 - \circ $\,$ $\,$ Out of the box integration with KerasNLP and KerasCV $\,$
- Progressive disclosure of complexity
- Introduces new stateless API for pure functional programming
- Distributed training as easy as non-distributed training

Pretrained models

Keras Core includes all Keras Applications (popular image classifiers)

KerasCV and KerasNLP work out of the box with Keras Core and all backends as of the latest releases

- YOLOv8
- Whisper
- BERT
- OPT
- etc.

- Support for cross-framework data pipelines
- Pretrained models
- Progressive disclosure of complexity
 - Start simple
 - Customize as per your needs
 - Go from Sequential/Functional to custom train_step to custom loops in no time
- Introduces new stateless API for pure functional programming
- Distributed training as easy as non-distributed training

Progressive disclosure of complexity

- Start simple, then gradually gain arbitrary flexibility ...
 - ... by "opening up the box"
- Example: model training
 - $\circ \quad \ \ fit \rightarrow callbacks \rightarrow custom \ train_step \rightarrow custom \ training \ loop$
- Example: model building
 - \circ Sequential \rightarrow Functional \rightarrow Functional with custom layers \rightarrow subclassed model

• Makes Keras suitable for students AND for Waymo engineers

•••

class CustomTrainStepModel(keras.Model): def __init__(self, *args, **kwargs):

super().__(intt__(*args, **kwargs))
self.loss_tracker = keras.metrics.Mean(name="loss")
self.mae_metric = keras.metrics.MeanAbsoluteError(name="mae")
self.loss_fn = keras.losses.MeanSquaredError()

def train_step(self, data):
 x, y = data

Compute loss.

y_pred = self(x, training=True)
loss = self.loss_fn(y, y_pred)

Compute gradients + update weights.

self.zero_grad()
loss.backward()
gradients = [v.value.grad for v in self.trainable_weights]
with torch.no_grad():
 self.optimizer.apply(gradients, self.trainable_weights)

Compute metrics and return current values.

self.loss_tracker.update_state(loss)
self.mae_metric.update_state(y, y_pred)
return {
 "loss": self.loss_tracker.result(),
 "mae": self.mae_metric.result(),
}

model = CustomTrainStepModel(inputs=inputs, outputs=outputs)
model.compile(optimizer="adam")
model.fit(dataset, epochs=10, callbacks=callbacks)

•••

class CustomTrainStepModel(keras.Model): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.loss_tracker = keras.metrics.Mean(name="loss") self.mae_metric = keras.metrics.MeanAbsoluteError(name="mae") self.loss_fn = keras.losses.MeanSquaredError()

def train_step(self, data):
 x, y = data

Compute loss.

with tf.GradientTape() as tape: y_pred = self(x, training=True) loss = self.loss_fn(y, y_pred)

Compute gradients + Update weights.

gradients = tape.gradient(loss, self.trainable_variables)
self.optimizer.apply(gradients, self.trainable_variables)

Compute metrics and return current values.

self.loss_tracker.update_state(loss)
self.mae_metric.update_state(y, y_pred)
return {
 "loss": self.loss_tracker.result(),
 "mae": self.mae_metric.result(),
}

model = CustomTrainStepModel(inputs=inputs, outputs=outputs)
model.compile(optimizer="adam")
model.fit(dataset, epochs=10, callbacks=callbacks)

Customizing model.fit(): PyTorch, TensorFlow

- Support for cross-framework data pipelines
- Pretrained models
- Progressive disclosure of complexity
- Introduces new stateless API for pure functional programming
- Distributed training as easy as non-distributed training

Stateless API (advanced)

- All Keras Core objects that have 'state' ...
 - ... also have a stateless API
 - So : Can use them in JAX functions
- Example :
 - outputs, updated_non_trainable_variables = layer.stateless_call(
 - trainable_variables,
 - non_trainable_variables,
 - inputs,
 -)
- This interface is created automatically from stateful version
- Enables use as a high-level JAX interface

- Support for cross-framework data pipelines
- Pretrained models
- Progressive disclosure of complexity
- Introduces new stateless API for pure functional programming
- Distributed training as easy as non-distributed training
 - Ehhh... Distributed training is always painful
 - Keras Core now integrates JAX distributed training

Cloud TPU - v5 with optical interconnects

JAX distributed computation in Keras Core

- Can specify :
 - Data parallelism
 - Model parallelism
- Make most of TPU infrastructure

2:37 AM · Sep 5, 2023 · 87.6K Views

•••

devices = keras.distribution.list_devices() # Assume there are 8 devices.

```
# Create a mesh with 2 devices for data parallelism and 4 devices for
# model parallelism.
device_mesh = keras.distribution.DeviceMesh(
    shape=(2, 4),
    axis_names=('batch', 'model'),
    devices=devices,
)
```

Create a layout map that shard the `Dense` layer and `Conv2D` # layer variables on the last dimension. # Based on the `device_mesh`, this means the variables # will be split across 4 devices. Any other variable that doesn't # match any key in the layout map will be fully replicated. layout_map = keras.distribution.LayoutMap(device_mesh) layout_map['.*dense.*kernel'] = keras.distribution.TensorLayout([None, 'model']) layout_map['.*conv2d.*kernel'] = keras.distribution.TensorLayout(['model']) layout_map['.*conv2d.*kernel'] = keras.distribution.TensorLayout([None, None, None, 'model']) layout_map['.*conv2d.*kernel'] = keras.distribution.TensorLayout([None, None, None, 'model'])

```
distribution = keras.distribution.ModelParallel(
    device_mesh=device_mesh,
    layout_map=layout_map,
    batch_dim_name='batch',
```

```
# Set the global distribution, or via `with distribution.scope():`
keras.distribution.set_distribution(distribution)
```

```
# Your usual workflow
model = get_model()
model.compile()
model.fit(...)
```


Wrapping up

Keras = future-proof stability

If you were a **Theano** user in **2016**, you had to migrate to **TF 1**...

... but if you were a Keras user on top of Theano, **you got TF 1 nearly for free** If you were a **TF 1** user in **2019**, you had to migrate to **TF 2**...

... but if you were a Keras user on top of TF 1, **you got TF 2 nearly for free** If you are using Keras on top of TF 2 in **2023**...

... you get JAX and PyTorch support nearly for free

And so on going forward (Mojo next?)

Frameworks are transient, Keras is your rock.

Why Keras Core?

• Maximize performance

- Pick the backend that's the fastest for your particular model
- Typically, PyTorch < TensorFlow < JAX (by 10-20% jumps between frameworks)

• Maximize available ecosystem surface

- Export your model to TF SavedModel (TFLite, TF.js, TF Serving, TF-MOT, etc.)
- Instantiate your model as a PyTorch Module and use it with the PyTorch ecosystem
- Call your model as a stateless JAX function and use it with JAX transforms

• Maximize addressable market for your OSS model releases

- PyTorch, TF have only 40-60% of the market each
- Keras models are usable by **anyone** with no framework lock-in

• Maximize data source availability

• Use tf.data, PyTorch DataLoader, NumPy, Pandas, etc. – with any backend

Resources

- <u>Keras Core Announcement</u>
- Introduction to Keras Core with Francois Chollet | PyImageSearch | LiveStream
- Keras Core developer guides
- <u>PyImageSearch annotated example</u>

Questions

Slides included contributions from :

Francois Chollet Keras Founder @fchollet

Aakash Kumar Nain ML GDE @A_K_Nain

Aritra Roy Gosthipaty ML GDE @ariG23498