

Deep Learning – Fun with TensorFlow
Martin Andrews

Red Cat Labs

Outline

 About me + Singapore community + Workshops

 Something in-the-news :
 What else I could have chosen for ths talk

 Actual talk content
 Including lots of code (show of hands?)

 Deep Learning / Data Science human resources
 Trying to fix the problem in Singapore

 Wrap-up

About me

 PhD in Machine Learning in the 1990s

 Since then : Finance / Analytics / Startups
 Moved from NYC to Singapore in September-2013

 2014 = 'fun' :
 Machine Learning, Deep Learning, NLP

 Robots, drones

 Since 2015 = 'serious' :: NLP + Deep Learning
 & Open Source...

 & Papers...

 & Workshops...

Singapore Data Science community

 Singapore is a small, smart city-state on the equator
 Country has very few natural resources

 Data Science is seen as a good strategic fit

 Community activities :
 DataScience SG : 5,100 members

 Topics : Technical, strategy & marketing

 PyData SG : 2,500 members
 Topics : Maybe show code, beginners welcome

 TensorFlow & Deep Learning SG : 1,000 members
 Topics : Must show code. Beginners – Advanced

 PyTorch & DL Group & Workshops...
 First meeting in July

Deep Learning workshops

 Started at FOSSASIA in 2016

 Problem :
 Want to teach Deep Learning “Hands on”

 Machines difficult to set up

 No WiFi

 Solution :
 Pre-configured VirtualBox Appliance, loaded with models and data

 Cross-platform, handed out on USB sticks

 All Open Source...

 This talk is a “Taste” - without time for hands-on

Something in the news...

 As well as introductory material, want to show “Hot Stuff”

 Major criteria :
 Must be ‘fun’

 Can’t use too much data (or require downloads)

 Should be trainable in steps of < 5 minutes

 Recent interesting things :
 WaveNet; DeepVoice; Tacotron (DeepMind, Baidu, Google)

 pix2pix (community)

 A:A’ :: B:B’ (Microsoft)

 CNN for language translation (Facebook)

 Objects from optical flow (Facebook)

 Final winner today is in the news for other reasons ...

Appendix : tacotron

 Problem : no Korean native speakers in SG office

Appendix : pix2pix

 Problem : training time

Appendix : Deep image analogies

 Problem : not really ‘Deep Learning’

Appendix : CNN for translation

 Problem : Korean language
 Statistically different from other languages

 Seems to combine words and ‘extras’ : RAN OUT OF TIME

Appendix : Objects from optical flow

 Problem : Need to prepare some photos from videos
 No time...

News (again) : AlphaGo

 Having achieved success in 2016...
 Will soon be playing again against Chinese player Ke Jie

 Has probably been self-playing continually since last year...

 Also surfaced for a series of ~60 anonymous games (undefeated)

Reinforcement learning

 Techniques that focus on decision-making processes ...
 ... where each decision/action affects the future options available

 Standard setting :
 Playing Chess or Go (or games with hidden knowledge / randomness)

 Other application examples :
 Deciding which advertisements to show

 Dynamic pricing policies

 Control of unknown ‘plant’ (e.g. air conditioning)

 Robots “learning-by-example”

Reinforcement learning

 Learning to choose actions ...
 ... which cause environment to change

 Agent idea :

Q-Learning in one slide

 Estimate value of entire future from current state
 Let’s call this function “Q(observable state)”

 Estimate value of next states, for all possible actions
 i.e Q @ t+1 (states after each action A_i)

 Remember to add on ‘rewards’ we earn for each one too

 Determine the 'best action' from estimates
 By picking the A_i that gives us the best next Q @ t+1

 Do the best action A*
 Check what state we actually get to, and rewards

 Now we can update Q(state) to the “better estimate” Q(A*)
 But sometimes Q(state) is actually known (win / lose, for instance)

Q-Learning practicalities

 Concretely in Go (one-step lookahead) :
 Q() value is ~ ‘winning probability of this board’

 But (at the beginning) these are all complete guesses

 Check every possible move :
 Work out which move gives highest Q() value next (‘looks best’)

 Execute the “best” move
 Add the training data Q(previous) -> Q(next @ best)

 But sometimes, there is no next move :
 The game is WON or LOST

 These are ‘truth’ for Q()

 Training teaches all the Q() values on a relative basis

Workshop example

 Go is too difficult to train in 5 minutes ...

 Basic principles can be seen in “Bubble Breaker”

Learning to play Bubble Breaker

 This is a very ‘clean’ version of the game

 Clicking on ‘joined’ bubbles kills the group
 Bubbles fall down from the top to fill the space

 Empty columns are filled by shifting columns over
from the left

 There are no special bubbles : just 5 colours

 Game ends when there are no moves left

 Estimate the Q() values using a Neural Network
 Inputs = current board features

 Output = single number ‘Q()’

Bubble Breaker key points

 Turning board into features
 5 colours are symmetrical

 Use that to speed up by 5!=120x

 Next actions are generated by Python code
 Which also gives us next boards

 EXCEPT : can’t ‘know’ new columns before actually doing the move

 Exploit vs Explore
 Simple 10% rule

 Rewards
 Using the ‘score’ promotes short-term gains

 Using new-columns-added leads to ‘better’ play

Workshop code / demo

 LIVE DEMO TIME !

AlphaGo extras

 Can get better estimates by looking several steps ahead

 But Go has too many possible next moves
 This makes exploring the ‘tree’ of moves too difficult

 So AlphaGo also has a probable-next-move estimate
 This prunes the game tree, so it can search more effectively

 This estimator itself had a (low) Dan rank for single-step play

 Also, after tree has been traced:
 Can teach Q() network at every level against every other one

 There was some analysis against human games
 Vast majority of learning is now against previous versions of AlphaGo

 Actually used TPUs in early 2016

Deep Learning : training humans

 Data Science / Machine Learning / Deep Learning

 Difficult to hire people with right skills
 As an employer, want to see practical experience

 Universities tend to lag
 And team projects make for weak interviews

 MOOCs are good indicators of genuine interest
 But coursework tends to be cookie-cutter

 Kaggle is cool. But now hyper-competitive (too much so)

 Starting in Singapore:
 Deep Learning Developer Course ~ 8 weeks x 2 evenings

 50% teaching. 50% individual projects.

Wrap up

 Lots of exciting developments in DL

 Many can be simplified to their essence

 Best to learn hands-on :
 Do projects from blog postings

 Read papers; Make up your own projects

 Contribute to open source

 Do lightning talks; ... Write papers

 All source code at :
 URL : https://github.com/mdda

 REPO : deep-learning-workshop (please *star*)

 PATH : /notebooks/7-Reinforcement-Learning/3-BubbleBreaker.ipynb

	Slide 1
	Slide 2
	Outline
	About me
	SingaporeCommunity
	DLWorkshops
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	RL-intro
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	DemoTime
	Slide 22
	TrainingHumans
	WrapUp

