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Abstract Named Entity Recognition (NER) is a foundational technology for sys-
tems designed to process Natural Language documents. However, many existing
state-of-the-art systems are difficult to integrate into commercial settings (due their
monolithic construction, licensing constraints, or need for corpuses, for example).
In this work, a new NER system is described that uses the output of existing systems
over large corpuses as its training set, ultimately enabling labelling with (i)better
F1 scores; (ii)higher labelling speeds; and (iii)no further dependence on the external
software.
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1 Introduction

One key capability required of natural language processing (NLP) systems is to be
able to identify the people, organisations and locations mentioned in a given text.
These labels (plus further categories that include times, dates, and numeric quantities,
for instance) are essential for understanding the facts described, yet they do not per
se add much to the linguistic structure of the text. Therefore, building systems that
can reliably perform this Named Entity Recognition (NER) has been a focus of
NLP research, since it is an essential stepping-stone to exploring the other linguistic
content in unstructured text.
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Unfortunately, while the NER task might be considered largely conquered from
a linguistic research viewpoint, building an effective system is still a challenge in a
commercial setting:

1. Licenses for many existing academic systems are not conducive to being em-
bedded within commercial systems

2. Often, existing codebases focus on ‘tweaks’ rather than solid engineering
3. Commercial systems may have particular task-specific requirements that are

difficult to implement on a pre-built system
4. Training corpuses can be a limiting factor, since commercial uses focus on spe-

cific domains of interest, rather than domains that have well understood corpuses
already available

This work describes an NER system that can be trained from the output of ‘known
good’ systems. Since the system developed here only requires large volumes of
(machine) annotated text, it essentially sidesteps several of the problems that these
existing systems have in commercial settings.

Moreover, the experiments show that the new system can learn to be better than
its teachers - both in the test scores obtained and labelling speed.

Importantly, the results obtained during training and testing are described here in
full - the models have not been cherry-picked and tweaked for publication - which
illustrates the robustness of this type of model and training process.

2 Model

2.1 Vocabulary Building

As described below, the CoNLL-2003 [1] NER datasets were chosen as the test-bed
for this work, and the unlabelled ‘Large Corpus’ was used to build the vocabulary
and word-embedding features.

A vocabulary was built from the contents of the whole Large Corpus (there were
484k distinct tokens in the 1.0Gb corpus) with the following additional tokenization
steps taken prior to insertion into the dictionary:

1. Convert to lower case
2. Replace each string of digits within the tokenwith NUMBER (so that, for instance,

‘12.3456’ becomes ‘NUMBER.NUMBER’)

2.2 Word Embedding Layer

Skip-gram embeddings of size 100 were pre-trained over the whole large corpus and
vocabulary using word2vec [2] as provided by the Python package gensim [3]
(this required only 15 minutes of wall-clock time).

The token embedding was filtered so that only tokens with 10 mentions or more
were included, yielding an effective vocabulary size of 118,695 distinct tokens. To
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cope with words not present in the embedding, a special token <UNK> was added to
the embedding space, with a vector that corresponded to the mean vector over the
rest of the known dictionary.

2.3 Additional Features

The only feature added to the vector representation of each token was an indicator
{0,1} as to whether that token/word had originally contained upper-case characters.
Therefore, for each token the extendedvector given to the next stagewas 101 elements
in length.

2.4 Bi-Directional Recurrent Neural Network (RNN)

Having mapped each token to a numerical input vector, a bi-directional recurrent
neural network was used to map the token embeddings to hidden states. Since each
timestep corresponded to exactly one output label, it was not necessary to separate
ingestion and output RNNs: a lock-step arrangement was sufficient.

The model was built using Theano using the recently announced blocks [4]
framework, which provides many useful primatives, and is currently under active
development. The sizes of the embedded parameters are given in Table 1.

In the interests of initially keeping the model as simple as possible, a very basic
recurrent network was used:

hF
t = tanh(WF hF

t−1 + xt )

hB
t = tanh(WBhB

t+1 + xt )

where hF
t and hB

t refer the hidden states in the forward and backward chains respec-
tively; WF and WB refer to independent weight matrices for each chain, and xt is
the extended token vector.

The initial conditions to the forward and backward chains, hF−1 and hB
T+1 are set

to values (that are also trainable inputs) at the beginning and end of each sentence
respectively.

Labelling Output Layer. One feature of the CoNLL-2003 datasets was that in
addition to the basic {PER, ORG, LOC, MISC} entity labels, there were also specific
‘Beginning’ labels to be used to separate two entitieswhich abutted against each other
without any other intervening token. However, situations in which this actually arose
were very rare (respectively {0.0%, 0.2%, 0.1%, 0.7%} of each token’s occurrences).
Therefore, to simplify the output stage logic, only 5 labels were learned (the entity
labels, plus O for non-entity tokens).

The output stage consisted of a dense linear layer (with bias), with each of the 5
label outputs at a given timestep connected to all the RNN hidden units at the same
timestep (both forwards and backwards chains), followed by softmax:
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Table 1 Model Parameters

Parameter Set Notation Shape # of Float32

Word Embedding (all tokens) x (118695, 100) 11,869,500

Generated features token_ucase() (..., 1) n/a

State transition matrices WF and WB (101, 101) × 2 20,402

State initialisation vectors hF−1 and hB
T+1 (101, 1) × 2 202

RNN outputs to label matrix XF and XB (202, 5) 1,010

RNN outputs to label biases bt (1, 5) 5

Total (RNN only) 21,619

Total Model 11,891,119

dt = XF hF
t + XBhB

t + bt

pi
t =

edi
t

∑
k edk

t

where dt refers to the linear combination over the RNN outputs at that timestep; XF

and XB refer to independent weight matrices for each chain; bt is a bias term; and
pt is the softmax output for the assigned label.

This ‘one-hot’ representation was trained using Categorical Cross-Entropy for
each label summed over batches of sentences as an objective function for gradient
descent, which used an ADADELTA [5] step rule.

During the test phase, labels were simply read from the output stage, without
post-processing.

2.5 External Models

As a basis for learning, theRNNwas trained against the provided training set (3.3Mb)
as well as the Large Corpus labelled by two external models. These models were
chosen because they are both state-of-the-art, have acceptable licenses and were
easiest to use off-the-shelf.

Please note that this paper’s results are only possible because its RNNmodels are
able to ‘stand on the shoulders of giants’: there is no intention here to detract from
the fine work that went into creating these models in the first place.

Other potential candidate models are mentioned below (in Related Work), but
studying the following was sufficient for the present experiments.

In all cases, care was taken to ensure that themodels all treated the given tokeniza-
tion in the same way, and that the results obtained from the models alone matched
the reported results.
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MITIE. According to its GitHub page (https://github.com/mit-nlp/MITIE), the MI-
TIE project (built around dblib [6]) is a state-of-the-art information extraction tool,
which performs named entity extraction and binary relation detection. It is available
under a permissive Open Source license (which, interestingly, was one of the key
objectives of the funding for the project provided by the DARPA XDATA program).

Model files specifically constructed for the CoNLL 2003 NER task are avail-
able for download. All MITIE output here was created using the 343Mb model file
english_ner_model_just_conll.dat.bz2.

Stanford Named Entity Recognizer. According to its substantial documentation
page (http://nlp.stanford.edu/software/CRF-NER.shtml) the Stanford Named Entity
Recognizer provides a general implementation of (arbitrary order) linear chain Con-
ditional Random Field (CRF) sequence models [7], and is included in the Stanford
CoreNLP suite of NLP tools.

According to Stanford’s NERbenchmarks, the Stanfordmodel was used to submit
results in the original CoNLL-2003 competition, and performed well. The model
file used here (v3.5.2 of english.conll.4class.distsim.crf.ser.gz) is close to (or an
improvement on, it is unclear) the original CoNLL-tuned version. The compressed
model size appears to be approximately 110Mb.

3 Experiments

3.1 CoNLL-2003

The experimental setting chosen was the same as given in CoNLL-2003 [1]. This
provided several distinct datasets (statistics for which are given in Table 2), each of
which were tokenised using the CoNLL-provided scripts:

“Large Corpus” This consists of 10 months of Reuters news stories, with no
labelling provided;

Training Set This is a labelled set of data that models can be trained on - with the
option also available (in 2003) of using external training data too;

Development Set This is a hold-out labelled test set (‘testa’) which was set
aside for validation and/or hyper-parameter selection;

Test Set This is the labelled test set (‘testb’), with scripts provided to calculate
recall/precision/F1 scores both overall and for each category label.

As described earlier, no additional pre- or post- processing was applied to the data.

Table 2 Data set sizes

Data sizes Bytes Words Sentences
“Large Corpus” 1.0Gb 184,717,139 11,869,032
Training Set 3.3Mb 204,567 14,987
Development Set 827Kb 51,578 3,467
Test Set 748Kb 46,666 3,685

https://github.com/mit-nlp/MITIE
english_ner_model_just_conll.dat.bz2
http://nlp.stanford.edu/software/CRF-NER.shtml
english.conll.4class.distsim.crf.ser.gz
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3.2 Models and Training

Training. Initial training runs used 15 million labelled sentences (this figure was
chosen to be approximately 1000 epochs on train - sufficient to fully learn the
CoNLL-2003 provided data). For the more extensive runs, the number of labelled
sentences was arbitrarily fixed at 100 million (this count does not include sentences
that were excluded by the ‘Consensus’ technique below).

Expert Scores. Included in Table 3 are results for the base scores for the two expert
models. These figures agree with their previously reported scores.

RNN Learning from Individual Experts. Test results are given for 15 and 100
million sentences of training (over the output of the respective expert labelling of
the Large Corpus). These results are surprisingly close to the expert they are being
trained from, despite having no knowledge of the internalworkings (or tweaks, tricks,
etc) being used.

In order to test the variability of models built, the ‘RNN-MITIE’ model was
trained with 15 different random number seeds for the internal model initialisation
(using, however, from the same initial word embedding data). The resulting set of
testb F1 scores had mean 88.15% and standard deviation of 0.14%.

RNN Trained on Training Set Alone. Although the RNN has the benefit of a word
embedding derived from the Large Corpus, the results show that solely learning the
labelling task from the training data set (1000 epochs) was insufficient for good
performance.

RNN ‘Mixer’. This RNN was trained from a data source that took (in turn) one
sentence from each of the Training Set, and Large Corpus sets as labelled by the
MITIE and Stanford experts (i.e. 3 sources in equal measure - even though this
implies considerably more epochs of Training Set data, since it is so much smaller
in size).

RNN ‘Consensus’. These RNNs were trained from a data source that took a fixed
proportion α of sentences from the Training Set (given as a percentage in Table 3),
and sentences whose labelling both the MITIE and Stanford experts agreed upon in
full. The fixed proportion α, viewed as a hyper-parameter, was chosen according to
the RNN performance on the Development Set (this was the only time the testa
dataset was used).

Ensembling. Simple ensembles of the most promising ‘Consensus’ RNNs and the
given experts were created (one of each type, doing a simple vote for each output
label). In addition, RNN models trained on each expert were also tested as members
of ensembles, to see whether ensembling gains could be made using solely RNN-
trained models.
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Table 3 F1 scores for individual and ensembled models

Sentences Training Dev. Set Test Set
(millions) Set F1% F1% F1%

Individual Models
Expert-MITIE n/a 96.98 97.11 88.10
Expert-Stanford n/a 97.66 91.79 88.19
RNN-MITIE 15 90.43 91.11 86.58
RNN-MITIE 100 93.08 93.25 88.08
RNN-Stanford 15 90.19 89.03 85.51
RNN-Stanford 100 91.93 90.26 86.24
RNN-TrainSet 15 99.62 84.47 79.50
RNN-Mixer 100 99.50 93.39 88.76
RNN-Consensus-00% 100 94.01 93.04 88.64
RNN-Consensus-05% 100 98.65 93.66 89.45
RNN-Consensus-10% 100 99.38 93.60 89.51

Ensemble Models (100 million sentences)
Consensus-05 + RNN-MITIE + RNN-Stanford 95.85 93.64 89.52
Consensus-05 + Expert-MITIE + RNN-Stanford 97.77 94.69 89.68
Consensus-05 + RNN-MITIE + Expert-Stanford 98.22 94.08 89.92
Consensus-05 + Expert-MITIE + Expert-Stanford 98.72 95.34 90.12
Consensus-10 + Expert-MITIE + Expert-Stanford 99.00 95.38 90.18

4 Analysis

4.1 The CoNLL-2003 Task

One surprising aspect of the CoNLL-2003 task was that the testb data set (on
which final F1s are measured) appears to be significantly different from the training
data given. Several features stand out:

1. There are many sports scores in testb (presumably because Reuters news
carried a lot of these articles during that end-of-summer time period);

2. Sports score summaries contain a lot of numeric tokens, with little in the way of
other linguistic structure;

3. Sometimes labelling of teams can be problematic, with ‘China’ being both a
location and a team (organisation) name.

The difficulty of testb is noticable specifically in the F1 scores for ‘RNN-
TrainSet’, which completely ignores testa during training. Note, though, that all
the other training runs may have implicit dependencies on testa simply because
theMITIE and Stanford systemsmay have relied on hyper-parameter selection based
on testa performance.
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4.2 Model Complexity

As mentioned in the description of the models used, an attempt was made to keep
the model becoming more complicated than necessary. The results obtained indicate
that the Simple Recurrent setup used is sufficient for the NER task.

However, for more complex tasks, it seems likely that Gated Recurrent Units
(GRU [8]) or their highly parameterized predecessor Long Short-Term Memory
(LSTM [9]) may have more expressive power (particularly since these are now com-
monly being stacked in layers). Fortunately, the blocks framework chosen here is
flexible enough to accommodate these enhancements.

In the context of the NER task, it is possible that the Stanford model incorporates
processes that are difficult to learn for the Simple Bi-Directional RNN used - as
evidenced by the F1 scores converging more slowly during training than is the case
for the MITIE model. In addition, during ensembling, using RNN-Stanford was
significantly less impactful than RNN-MITIE, which is a pity, since the Stanford
model is heavier computationally, as can be seen from Table 4.

Table 4 System labelling speed

Sentences Comment
per second

Expert-MITIE 1,646 OpenBLAS / Lapack found during compilation, but the
system appeared to run single-threaded

Expert-Stanford 48 This was invoked through Stanford CoreNLP, but
only stages relevant to NER were run

RNN (all) 3,123 This implementation was GPU-based, and timings were
taken during backprop training (simply labelling re-
quires fewer operations)

4.3 Implementation Speed

TheRNN implementation benefited significantly from using a consumer-gradeGPU.
One feature of the Theano/blocks framework is that themodel description is coded
independent of the target computing device, since Theano is capable of dynamically
creating C++, OpenCL, and CUDA code as required.

By choosing an appropriate batch size for the training (so that multiple sentences
to be trained in parallel), a speed-up of 35x was realized over the initial choice of
parameters used by example code online (see Table 5).

A GPU blocksize of 256 was chosen, since higher blocksizes appeared to cause
significant delays in saving Checkpoint data to disk (the 1Gb files saved for the
256 blocksize were deemed acceptable).

Overall, the training time on each 100million sentence experiment was 7-8 hours.
The Consensus experiments took approximately 50% longer, solely because much
of the data ingested was immediately discarded (and not learned).
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Table 5 Training time in seconds on 150k sentences (lower is better)

CPU GPU
i7-4770 CPU GTX 760

batchsize @ 3.40GHz (2Gb)
8 1030 455
64 254 70
256 211 29
512 n/a 23

4.4 Consensus Methods

Evidently, training amodel solely on the data uponwhich experts agree is an effective
approach.What is surprising is that it still works in the cases where the experts would
disagree, because the model would not have received training from either expert in
these circumstances.

Comparing the Consensus models with ‘Mixer’ (which is very similar in design,
except that no filtering is taking place: the three sources of training data are used on a
round-robin basis), it is clear that filtering the training examples is actually beneficial
to learning.

There is also a sense inwhich theConsensusmodels are performing an ensembling-
together of three different training datasets - with the ensemble voting taking place
during the ingestion phase, rather than on the final output labels. Interestingly, this
puts a heavy burden on the generalization ability of the RNN model to cases in
which its supposed teachers disagree. Apparently, this is something these models are
capable of doing.

4.5 Ensembling

The best results obtained in this paper were (unsurprisingly) from ensembles of mod-
els. Indeed, some of these results broke through the apparent 90% F1 score barrier.
However, it was somewhat disappointing that ensembles of pure RNNmodels didn’t
reach the same levels of performance of RNN models ensembled with the original
experts. This is particularly true of the Stanford model, which is the more desirable
of the two models chosen to eliminate (due to speed and licensing considerations).

On the other hand, from a practical point of view, optimising out the last ounce
of performance is probably less important than the overall lessons to be learned:
Ensembling does work between models, but the implicit ensembling provided by the
training of the Consensus models may be both more robust and easy to implement.

4.6 Further Enhancements

The commercial setting in which this work takes place is particularly focused on
English-language documents sourced from the ASEAN region.
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Given the variability of names in the region (specifically names of people), and
their ‘obvious’ differences in spelling from English words, one further enhance-
ment to the system is the creating of additional word features using a letter-based
RNN trained on databases of English prose and ASEAN names (these corpuses have
already been curated).

Thus, instead of embedding concrete gazetteers (as is common formore traditional
systems), the plan is to train an RNN on the NER task on a character-by-character
basis. The trained RNN can then be ‘cut off at the output stage’ so that its internal
pre-output state (a 20 element vector) can be used as additional features for each
token for the RNN described in this paper (name tokens that might otherwise all be
assigned to UNK). This scheme may also offer the opportunity to further characterize
names by country-of-origin, for instance.

5 Related Work

Surprisingly, an approach that used LSTM neural networks was previously under-
taken for the CoNLL task in 2003 [10]. However, this was published well before
importance of word-embedding was understood, so the results reported there (<75%
F1 overall) are essentially from a different era.

Work by Collobert et al. [11] published in 2011, demonstrated that a pure data-
driven neural network approach to language tasks can be very effective. They made
use of extensively trained word-embeddings, but did not make use of Recursive
Neural Networks (their ‘sentence scoring’ element was performed using a max-
pooling approach over a convolutional layer on top of the word embeddings). Their
sofware SENNA is published under a No Commercial Usage license, and achieves
approximately the same performance as the Consensus models created here.

Presented at ICLR (in May 2015), Oriol Vinyals et al. [12] essentially repurposed
Google’s LSTM translation framework to learn ‘Grammar as a foreign language’.
This task is more difficult than the step-wise labelling performed herein, and required
considerably larger computation resources. For example, their network needed to
produce 100 different labels, and they made use of a 512-dimensional embedding,
and large multi-layered LSTM networks with a 4000-dimensional internal state.
Overall, their model included 34 million trainable parameters. That being said, their
approach strongly influenced the direction of this work.

5.1 Other External Models Considered

Berkeley Entity Resolution System. The Berkeley NER [13] system is also a state-
of-the-art NER system, and is part of the suite of software used in the ‘Grammar
as a Foreign Language’ work cited above. It is GPL3+ licensed, which would be
acceptable for the current work, however it was not used here purely for time reasons.
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Illinois Named Entity Tagger. This NER system [14], created by the Cognitive
Computation Group from the University of Illinois at Urbana-Champaign, reports
scoring 90.8% testb F1 on the CoNLL-2003 task, which makes it an attractive
candidate system to learn from.

However, despite the IllinoisNER systembeing available under a broadly copyleft
license to a Licensee for “its own academic and research purposes”, the license
includes the following explicit non-commercial usage clause:

“No license is granted herein that would permit Licensee to incorporate the
Software into a commercial product, or to otherwise commercially exploit the
Software. ”

This current work illustrates the type of legal questions that learning systems bring
into focus: If the software is solely used to create a corpus annotation, and a model
is trained from that corpus, has the Software been commercially exploited? Is the
Licensor asserting come kind of usage rights over all output of the Software? This
is surely a new set of challenges to be faced by software license writers, similar to
how the GPL has evolved to avoid the ‘Tivoization’ problem.

6 Conclusions

This work has shown that it is possible to build a near state-of-the-art NER system
based solely on the output of externally created software systems.

Even without ensembling (from which even better results were obtained), the
resulting system was shown to have learned to exceed the capabilities of its teachers,
while being significantly more amenable to usage within a commercial environment.
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Appendix

Working code to implement the RNN scheme outlined in this paper is available
through links on: https://github.com/mdda
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