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Abstract. Recent methods for learning vector space representations of
words have succeeded in capturing fine-grained semantic and syntactic
regularities using large-scale unlabelled text analysis. However, these rep-
resentations typically consist of dense vectors that require a great deal of
storage and cause the internal structure of the vector space to be opaque.
A more ‘idealized’ representation of a vocabulary would be both com-
pact and readily interpretable. With this goal, this paper first shows that
Lloyd’s algorithm can compress the standard dense vector representation
by a factor of 10 without much loss in performance. Then, using that com-
pressed size as a ‘storage budget’, we describe a new GPU-friendly factor-
ization procedure to obtain a representation which gains interpretability
as a side-effect of being sparse and non-negative in each encoding dimen-
sion. Word similarity and word-analogy tests are used to demonstrate the
effectiveness of the compressed representations obtained.

1 Introduction

Distributed representations of words have been shown to benefit NLP tasks like
parsing, named entity recognition, and sentiment analysis, as well as being used
as the raw material for other deep learning tasks.

Surprisingly, these word vector embeddings can be derived directly from raw,
unannotated corpora. Once created, the vector embedding E can be expressed
simply as a list of vocabulary words (of size V ), and a matrix of size V × d,
where d is the dimensionality of the embedding space.

As argued in [1], while this dense matrix representation may be handled with
ease by computers, there are cognitive arguments against such a representation
being the basis of language (see [2] for broader discussion on this point). For
instance, it seems unlikely that the same small set of features are sufficient and
necessary to describe all semantic domains of a full adult vocabulary. It would
also be uneconomical for people to store all negative properties of a concept, such
as the fact that dogs do not have wheels, or that airplanes are not used for commu-
nication. Indeed, in feature-norming exercises (for example [3]) where participants
are asked to list the properties of a word, the aggregate descriptions are typically
limited to approximately 10–20 characteristics for a given concrete concept.

So, for cognitive plausibility, we claim that a feature set should have three
characteristics: it should only store positive facts; it should have a wide range of
feature types, to cover all semantic domains in the typical mental lexicon; and
only a small number of these should be active to describe each word/concept.
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2 Models

In this work, a 300-dimensional GloVe [4] embedding was used as a concrete
baseline for a number of different lossy compression methods1.

2.1 Simple Compression

A number of different compression methods were explored to establish a ‘storage
budget’ for the subsequent experiments in sparse encodings. These intial methods
focussed on discarding data, while resulting in an approximately equivalent level
of performance in the ‘Google’ word analogy task (described later).

The methods that were explored included (i) directly discarding a fixed pro-
portion of the vector dimensions; (ii) thresholding the data; (iii) quantising the
data based on curves of the form ±|vi|α for each dimension i of a given vector v;
and (iv) adaptive level encoding. This last approach, efficiently implemented via
Lloyd’s algorithm [5], was shown to be capable of approximating each element
vi of the entire vocabulary with only 8 discrete levels (each dimension i being
independently calibrated) while still performing acceptably on the analogy task.

Thus, for the 300-dimensional embedding, a 900-bit ‘storage budget’ was
established, and used as the storage bound for the sparsification experiments.

2.2 Lloyd’s Algorithm

For a given number of quantisation levels n and an element e ∼ E, we want to
create a set of quantisation levels eq that minimises:

∑

e∈E

min
q

(e − eq)2

This process can be performed iteratively, starting with the eq placed uni-
formly within the values of E sorted numerically.

The algorithm then iteratively updates the eq such that the centroid of each
neighbouring cluster is found, and the eq are then updated to these positions.
The algorithm stops when no more changes are required.

This optimisation is done for each element/column of the embedding inde-
pendently, and a list of the respective levels of eq is stored, in addition to the
index within each list for each element of the representation.

2.3 Sparse Compression

Non-negative Sparse Embedding (“NNSE”). A very promising approach
to sparse embedding was taken in [1], where the following optimisation was
solved iteratively to generate a sparse embedding A (which is V vectors each

1 The techniques described in this paper can be applied to any embedding, since
nothing specific to GloVe has been used.
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with dimensionality k), and also creates a ‘dictionary’ D (which maps the sparse
elements of A onto the real-valued embedding E):

argminA∈Rm×k,D∈Rk×n

V∑

i=1

||Ei,: − Ai,: × D||2 + λ||Ai,:||1

where : Di,:,D
T
i,: ≤ 1, 1 ≤ ∀i ≤ k

and Ai,j ≥ 0, 1 ≤ ∀i ≤ V, 1 ≤ ∀j ≤ k

Although this produced excellent embedding results, one requirement is to
vary the parameters k and λ such that the sparse embedding A had a ‘reason-
able’ number of positive entries. Since one of the targets of this paper is com-
pression, targetting a concrete compression level, this hyperparameter search is
not acceptable.

Winner-Take-All Autoencoders. Another approach to sparse encoding,
applied chiefly to visual tasks, was described in [6]. There, “Winner-Take-All
Autoencoders” obtained strict sparsity targets by interposing a drop-out layer
that only allows the top-α fraction of the layer’s inputs to be passed through,
while the rest are set to zero. An important implementation detail is that this
drop-out is done on a per dimension basis over each minibatch of training exam-
ples. This implicitly causes the training to balance the occurrences of non-zero
entries across the different dimensions of the embedding space, while allowing
the Ai,: vectors to have varying numbers of non-zero entries.

Unfortunately, obtaining the top-α fraction of a set of numbers requires sort-
ing the list, which means that including this layer in an neural network will
move data-intensive computations off the GPU. In order to produce a sparse
embedding in reasonable time, however, the GPU is required, so an algorithmic
short-cut was implemented that can be efficiently executed inside the GPU.

GPU-Friendly Top-α. Clearly, determining the top-α percentile of a distrib-
ution is equivalent to determining the hurdle value h∗ above which the fraction
α of the realised values in the minibatch lie2.

For a given embedding dimension j, and assuming that α � 50% and that
the distribution is not pathelogical, this hurdle can be bounded above by h+

j =
max(A:,j) and below by h−

j = mean(A:,j). A binary section search can then be
made for h∗, since the fractional percentile for any given h can be determined
by taking the mean of a simple matrix A:,j > h indicator function3.

Although a thorough implementation of this binary section process would
include stopping criteria, that would not make sense within the GPU’s cores’
execution flow. So a fixed number of bisection iterations was used (specifically
5 for our 16,384 minibatch size). This was found to give robust results, with
a value of h being found that identified (approximately) the top-α percentile
consistently. The net result of avoiding CPU operations was a 39× speed-up.
2 A minibatch has 16,384 examples – large enough for distribution approximations.
3 Also, α+

0 = (1/batchsize) initially, since it is the maximum value in A:,j .
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Experiments were also conducted to try and optimise the placement of each
h estimate, using distributional properties of N(), or linear interpolation. These
were not successful, however, since it appears that the neural network learns to
exploit the distribution assumptions being made, so as to win artificially low h
(and thus a higher accepted α than required).

Sparse Autoencoding for Word Embeddings. To avoid learning from
scratch the entire sparse matrix A, an autoencoding scheme was set up, so that
the target embedding E was mapped onto intermediate layers, then quantised,
then mapped back to itself (via a trainable dictionary D).

The layers of the implemented autoencoder are described in Table 1, where
concrete sizes are given, assuming a vocabulary size of 217 = 131, 072 words, 300-
dimensional underlying embedding, and a sparse embedding of size k = 1024.

Table 1. Sparse Auto-encoding model structure

Parameter set Intra-layer operations Output shape

Word embedding (all tokens) E (217, 300) ∈ R

Hidden layer max(WHx + bH , 0) (217, 300 × 8) ∈ R
+

Pre-binary linear layer WLx + bL (217, 1024) ∈ R

Batch normalization layer batchnormalize(x) (217, 1024) ∈ R

Rectification max(x, 0) (217, 1024) ∈ R
+

Gaussian noise x + N(0, βt) (217, 1024) ∈ R

Top-α sparsification drop-all-but-α(x, αt) (217, 1024) ∈ R
+

Sparse encoded version A = x (217, 1024) ∈ R

Output (=E∗) WFx + bF (217, 300) ∈ R

The quantity being optimised via gradient descent was the l2 error between
the output embedding E∗, and the input E, and this scheme was accelerated
using ADAM [7].

Note that no regularisation terms were used. There is regularisation being
implicitly applied due to the top-α sparsity constraint, coupled with the batch
normalization that occurs in the layer before the sparse encoding. These combine
to constrain the sparse encoding A within reasonable bounds.

In order to improve convergence, a scheme was used whereby a variable σ (ini-
tially zero) was incremented (by 0.01) after each epoch only if the l2 error over
the epoch averaged less than 0.01. The variables αt and βt were then dynamically
adjusted as follows:

αt = 50% × (e10σ) + α × (1 − e10σ)

βt = 0.2 × e0.01σ
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Having this path-dependent speed regulator enabled learning pressure to be
applied incrementally through training in a way that was sensitive to current
training progress. In particular, the sparsity factor α0 was started out at ‘easy’
values, so that the initial weights could migrate to areas where they were at least
tackling the underlying problem - and αt then moved asymptotically closer to α
over the course of a thousand epochs. Similarly, the Guassian noise layer seemed
to improve search in later periods, and this was decayed more slowly.

After training, the noise-layer was switched off, and the network-learned A
and E∗ were used for the performance analyses below.

Representation of Sparse Encodings. Suppose a non-negative sparse encod-
ing over a k-dimensional space is required, and a specific ‘bit budget’ of n bits
is given. Since the majority of encoding values will be zero, the representation
need only store the addresses of the non-zero elements, and their values.

Moreover, because the ordering of the list of values is an additional degree
of freedom, one can increase the information content by storing (a) the length
of the list, (b) the locations of each of the values in declining numerical order,
(c) the highest value, and (d) the percentage ratio between each sucessive pair
(typically in the range [70%...100%]).

Supposing that 3-bits is sufficient for each ratio (d)4, then the required spar-
sity ratio α can be determined:

α =
n

k(log2(k) + 3)

In the experiments that follow, the α values are chosen to be within this
bound.

In addition to the n × V bits of storage required, there is the additional
overhead of storing the dictionary D - which consists of k × d elements, which
can be a significant factor if k is large.

3 Experiments

3.1 Corpus

The text corpus used here was the concatenation of (a) the ‘One Billion Word
Benchmark’ [8], and (b) a cleaned version of English Wikipedia (August 2013
dump, using only pages with greater than 20 pageviews), which was pre-
processed by removing non-textual elements, sentence splitting, and tokeniza-
tion. After preprocessing the corpus contained 1.2 billion tokens (680 million
and 524 million from each respective source)5.

4 While (c) might be stored with higher fidelity, the remaining ratios are less exacting.
5 Importantly, these resources have been made freely available without restrictive

licenses, and in the same spirit, the code for this paper is being released under
a permissive license.
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Models were derived using windows of 5 tokens to each side of the focus word.
Rather than focus on a word occurrence limit (as is common), a vocabulary-size
of 217 = 131, 072 words was chosen, since (a) it made batching more convenient,
and (b) the limit is arbitrary either way.

3.2 Test Datasets

We evaluated each word representation on seven datasets covering similarity and
analogy tasks, using the test framework of Levy et al. [9], which has code and
data available at: https://bitbucket.org/omerlevy/hyperwords.

Word Similarity. Five datasets were used to evaluate word similarity: the
popular WordSim353 [10] partitioned into two datasets, WordSim Similarity
and WordSim Relatedness [11,12]; Bruni et al.’s MEN dataset [13]; Radinsky
et al.’s Mechanical Turk dataset [14]; and Luong et al.’s Rare Words dataset [15].
All these datasets contain word pairs together with human-assigned similarity
scores. The word vectors are evaluated by ranking the pairs according to their
cosine similarities, and measuring the correlation (Spearman’s ρ) with the human
ratings.

Word Analogy. The two analogy datasets present questions of the form “a is
to a∗ as b is to b∗”, where b∗ is hidden, and must be guessed from the entire
vocabulary. MSR’s analogy dataset [16] contains 8000 morpho-syntactic analogy
questions, such as “good is to best as smart is to smartest”. Google’s analogy
dataset [17] contains 19544 questions, about half of the same kind as in MSR
(syntactic analogies), and another half of a more semantic nature, such as cap-
ital cities (“Paris is to France as Tokyo is to Japan”). After filtering questions
involving out-of-vocabulary words, i.e. words that did not appear in the pruned
Corpus, we remain with 7118 instances in MSR and 19296 instances in Google.

As in [18], the analogy questions are answered using both 3CosAdd as well
as 3CosMul.

3.3 Results

Embeddings with representations compressed by the Lloyd algorithm and the
non-negative sparse encoding methods outlined above were run, with results
shown in Tables 2 and 3.

In addition to the reconstructed embeddings E∗ for each method, the raw
results of the similarity and analogy tests were run on the intermediate sparse
embeddings A themselves.

As a point of comparison, a random vector approach (binarised locality sen-
sitive hashing: “LSH” [19]) was also tested, with the same 900-bit constraint.

https://bitbucket.org/omerlevy/hyperwords
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Table 2. Similarity results

Method WordSim
Similarity

WordSim
Relatedness

Bruni et al. Radinsky et al. Luong et al.

MEN M. Turk Rare words

GloVe baseline 66.2% 52.1% 69.1% 63.2% 22.8%

Lloyd-8 65.9% 51.5% 68.6% 62.3% 22.7%

E∗(k = 4096, α = 1.50%) 65.0% 50.2% 68.5% 62.7% 22.2%

E∗(k = 1024, α = 6.75%) 64.7% 51.0% 67.7% 62.7% 21.9%

A(k = 4096, α = 1.50%) 63.7% 45.2% 62.4% 49.5% 18.0%

A(k = 1024, α = 6.75%) 69.2% 51.3% 69.5% 62.1% 17.4%

LSH-900 62.0% 45.8% 65.9% 59.2% 22.0%

Table 3. Analogy results

Method Google MSR

Add/Mul Add/Mul

GloVe baseline 67.1 %/68.5 % 53.4 %/56.6 %

Lloyd-8 65.9 %/67.4 % 51.9 %/54.5 %

E∗(k = 4096, α = 1.50 %) 62.5 %/66.4 % 51.8 %/54.1 %

E∗(k = 1024, α = 6.75 %) 62.4 %/62.9 % 49.0 %/50.1 %

A(k = 4096, α = 1.50 %) 37.6 %/40.8 % 27.3 %/29.9 %

A(k = 1024, α = 6.75 %) 52.5 %/55.1 % 40.5 %/43.8 %

LSH-900 53.0 %/53.1 % 41.2 %/42.2 %

4 Discussion

4.1 Level Quantisation vs. More Sophisticated Methods

The level-quantisation approaches to compression work extremely well, and are
relatively simple to implement. Assuming values would otherwise be stored as 32-
bit floats, the Lloyd method achieves very similar scores, with only 3-bits per value
(the overhead of storing the quantisation levels is only the equivalent of storing 8
of the original word-vectors). However, they do not accomplish the goal of learning
about the underlying embedding through an efficient compression algorithm.

4.2 Performance of Sparse Embeddings

As can be seen from Table 2, the reconstruction (E∗) results for both sparse
embedding methods are only marginally below those of the original embeddings,
and generally better than the LSH re-representation. This is satisfying, because
it shows that the GPU-friendly method outlined here actually reconstructs the
embedding without a significant loss in performance, within the same ‘bit budget’
as the quantisation methods.
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The fact that the sparse encodings A can also perform as embeddings on
their own (without involving the learned dictionary D) is encouraging, since it
implies that there is more information about the underlying language that can
be obtained from existing word embeddings ‘for free’.

Interestingly, their performance on similarity tasks is far higher than on the
analogy ones (particularly in the case of k = 4096 which has an α of only 1.50%).
This can be understood by considering the algebra of the sparse non-negative
vectors being used. For similarity purposes, non-negative vectors can be scored
using the same a cosine measure that works for more general dense, real-valued
vectors. However, for the analogy tasks, there are implicit subtractions being
done, which result in direction vectors that are not part of the same algebra.
This deserves further work, to see whether other operators would be able to
make use of the sparse vector spaces’ geometry more fully (potentially including
ideas from [20]).

4.3 Interpretability of the Sparse “A”

Table 4 (which lists the highest weighted words in each dimension that ‘motor-
bike’ is also most highly weighted) clearly demonstrates that the A sparse repre-
sentation has learned something about the structure of the English language ‘for
free’, using only data obtained from an embedding trained on unlabelled data
itself.

Table 4. Top ‘motorbike’ dimensions

Model Top words in each of first 7 dimensions

GloVe baseline · lb., four-bladed, propeller, propellers, two-bladed, . . .

· passerine, 1975-79, rennae, fyrstenberg, edw, coots, . . .

· bancboston, oshiomhole, 30-sept, holmer, smithee, recon, . . .

· http://www.nytimes.com, (888), receival, jamiat, shyi, . . .

· subjunctive, purley, 11-july, broaddus, muharram, ebit, . . .

· proximus, pattani, 31-feb, wgc, 30-nov, crossgen, 2,631, . . .

· officership, tvcolumn, integrable, salticidae, o-157, ...

A( k=1024
α=6.75%) · vehicles, vehicle, cars, scrappage, car, 4x4, armored, . . .

· prix, races, race, laps, vettel, rikknen, sprint, . . .

· ski, coal, gas, taxicab, nuclear, wine, cellphone, . . .

· kool, electrons, pulpit, efta, gallen, gasol, birdman, . . .

· eric, anglo, tornadoes, rt, asteroids, dera, rim, . . .

· wear, trousers, dresses, jeans, wearing, worn, pants, . . .

· stabbed, kercher, 16-year-old, 15-year-old, 18-year-old, . . .

http://www.nytimes.com
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5 Conclusion

The joint goals of good compression rates and cognitive plausibility are realistic
and achievable.

Using the GPU-friendly sparsity Winner-Take-All Autoencoder scheme
described, sparse, non-negative encodings have been demonstrated that com-
bine high compression with interpretability ‘for free’.

Further work will include the investigation of operators that respect the
geometry of these sparse vectors, so that analogy tests might perform in-line
with the word similarity scores (which are purely direction-based).
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