
Martin Andrews, ML GDE

TensorFlow Extended (TFX)
(and a little bit of TensorFlow Lite)

@ BigDataX Singapore : 13-July-2019

Martin Andrews

Google Developer Expert, Machine Learning

Red Dragon AI, Singapore

Outline
● Machine Learning for Production

○ Part of a Bigger Picture
● How the components are joined together
● What all the components do :

○ Data ingestion …
○ … ? ...
○ … to serving (and TFlite)

● Wrap-up

In addition to training a model ...

ML Code

… a production solution requires so much more

Configuration

Data Collection

Data Verification

Feature Extraction

Process Management Tools

Analysis Tools

Machine Resource
Management

Serving Infrastructure

Monitoring

ML Code

Tensorflow Extended (TFX)

Powers Alphabet’s most important bets and products

Tensorflow Extended (TFX)

Libraries

Components

TFX Production Components

Data
Validation

Feature
Engineering

Train
Model

Data
Ingestion

Validate
Model

Push If
Good

Serve
Model

What is a Component?

What makes a Component

Coordinates job execution

Performs the work

Updates ml.metadata

What makes a Component?

Well defined config

What makes a Component?

What makes a Component?

TFX: Metadata Store
What does it contain?

Type definitions of Artifacts and their
Properties

What is in Metadata Store?

Type definitions of Artifacts and their
Properties

Execution Records (Runs) of Components

What is in Metadata Store?

Type definitions of Artifacts and their
Properties

Execution Records (Runs) of Components

Data Provenance Across All Executions

What is in Metadata Store?

Metadata-Powered
Functionality

Metadata-Powered
Functionality

Find out which data a model
was trained on

Metadata-Powered
Functionality

Compare previous model runs

Metadata-Powered
Functionality

Carry-over state from previous
model runs

Metadata-Powered
Functionality

Re-use previously computed
outputs

TFX Orchestration

Bring your own Orchestrator
Flexible runtimes run components in the proper order using
orchestration systems such as Airflow or Kubeflow

Airflow Kubeflow Pipelines

Orchestrators and DAGs

All the Components

Component: ExampleGen

examples = csv_input(os.path.join(data_root, 'simple'))

example_gen = CsvExampleGen(input_base=examples)

Configuration

ExampleGen

Raw Data

Inputs and Outputs

CSV TF Record

Split TF
Record Data

Training

Eval

Component: StatisticsGen

statistics_gen =
 StatisticsGen(input_data=example_gen.outputs.examples)

Visualization

StatisticsGen

Data

ExampleGen

Statistics

ConfigurationInputs and Outputs

Analyzing Data with TensorFlow Data Validation

Component: SchemaGen

SchemaGen

Statistics

StatisticsGen

Schema

infer_schema = SchemaGen(stats=statistics_gen.outputs.output)

Visualization

ConfigurationInputs and Outputs

Component: ExampleValidator

Example
Validator

Statistics Schema

StatisticsGen SchemaGen

Anomalies
Report

validate_stats = ExampleValidator(
 stats=statistics_gen.outputs.output,
 schema=infer_schema.outputs.output)

Visualization

ConfigurationInputs and Outputs

Component: Transform

transform = Transform(
 input_data=example_gen.outputs.examples,
 schema=infer_schema.outputs.output,
 module_file=taxi_module_file)

for key in _DENSE_FLOAT_FEATURE_KEYS:
 outputs[_transformed_name(key)] = transform.scale_to_z_score(
 _fill_in_missing(inputs[key]))
...

outputs[_transformed_name(_LABEL_KEY)] = tf.where(
 tf.is_nan(taxi_fare),
 tf.cast(tf.zeros_like(taxi_fare), tf.int64),
 # Test if the tip was > 20% of the fare.
 tf.cast(
 tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

...

Transform

Data Schema

Transform
Graph

Transformed
Data

ExampleGen SchemaGen

Trainer

Code

Code

ConfigurationInputs and Outputs

Using TensorFlow Transform for Feature Engineering

Using TensorFlow Transform for Feature Engineering

Training Serving

Component: Trainer

Trainer

Data Schema

Transform SchemaGen

Evaluator

Code

Transform
Graph

Model
Validator Pusher

Model(s)

Highlight: SavedModel Format

TensorFlow
Serving

TensorFlow
Model Analysis

Train, Eval, and Inference Graphs

SignatureDefEvalSavedModel

SavedModel

Inputs and Outputs

Component: Trainer

trainer = Trainer(
 module_file=taxi_module_file,
 transformed_examples=transform.outputs.transformed_examples,
 schema=infer_schema.outputs.output,
 transform_output=transform.outputs.transform_output,
 train_steps=10000,
 eval_steps=5000,
 warm_starting=True)

Just TensorFlow :)

Trainer

Data Schema

Transform SchemaGen

Evaluator

Code

Transform
Graph

Model
Validator Pusher

Model(s)

Inputs and Outputs

Code

Configuration

Component: Evaluator

Evaluator

Data Model

ExampleGen Trainer

Evaluation
Metrics

model_analyzer = Evaluator(
 examples=examples_gen.outputs.output,
 eval_spec=taxi_eval_spec,
 model_exports=trainer.outputs.output)

Visualization

ConfigurationInputs and Outputs

Component: ModelValidator

● Validate using current eval data
● “Next-day eval”, validate using unseen data

Model
Validator

Data

ExampleGen Trainer

Validation
Outcome

Model (x2)

model_validator = ModelValidator(
 examples=examples_gen.outputs.output,
 model=trainer.outputs.output,
 eval_spec=taxi_mv_spec)

ConfigurationInputs and Outputs

Configuration Options

Component: Pusher

Validation
Outcome

Pusher

Model
Validator

Pusher
PusherDeployment

Options

pusher = Pusher(
 model_export=trainer.outputs.output,
 model_blessing=model_validator.outputs.blessing,
 serving_model_dir=serving_model_dir)

Block push on validation outcome

Push destinations supported today
● Filesystem (TensorFlow Lite, TensorFlow JS)
● TensorFlow Serving

ConfigurationInputs and Outputs

Serve the Model !

TensorFlow Serving
Production-Ready

Used for years at Google, millions of QPS

Scale in minutes

Dynamic version refresh

TensorFlow Serving
High-Performance

Low-latency

Request Batching

Traffic Isolation

$ apt-get install tensorflow-model-server

$ tensorflow_model_server

 --port=8501

 --model_name=chicago_taxi

 --model_base_path='/path/to/savedmodel'

Deploy a REST API for your model in minutes ..

$ docker run -p 8501:8501 \

 -v '/path/to/savedmodel':/models/chicago_taxi

-e MODEL_NAME=chicago_taxi -t tensorflow/serving

... or locally on

 your host ...

... using
Docker ...

What is
TensorFlow Lite?

TensorFlow Lite is a
framework for deploying ML
on mobile devices and
embedded systems

Have now deployed TensorFlow Lite in production.

More than 2B devices
globally.

Source: https://medium.com/tensorflow/recap-of-the-2019-tensorflow-dev-summit-1b5ede42da8d

https://medium.com/tensorflow/recap-of-the-2019-tensorflow-dev-summit-1b5ede42da8d

Classification

Prediction

Recognition

Text to Speech

Speech to Text

Object detection

Object location

OCR

Gesture recognition

Facial modelling

Segmentation

Clustering

Compression

Super resolution

Translation

Voice synthesis

Video generation

Text generation

Audio generation

AudioImageSpeechText Content

Easy to get started

1

Jump start

Use our pretrained
models or retrain

2

Custom model

Deploy your custom
model

3

Performance

Benchmark, validate &
accelerate your models.

4

Optimize

Try our Model
Optimization Toolkit

TensorFlow Lite powers
ML Kit

● ML Kit is out-of-the-box proprietary models
that you can run on device

Converting your model Custom Model

TensorFlow
(estimator or keras)

Saved Model TF Lite
Model

TF Lite
Converter

import tensorflow as tf

converter =
tf.lite.TFLiteConverter.from_saved_model(saved_model_dir
)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)

TensorFlow 1.X

● Limited ops

● Unsupported semantics (i.e. control-flow in RNNs)

Conversion is
sometimes hard

Custom Model

Goal: As fast as possible on all hardware (CPU, GPU, DSP, NPU)

Get your models running
as fast as possible

Performance

CPU
83 ms

CPU 1.8x
47 ms

GPU 5.5x
15 ms

EdgeTPU 42x
2 ms

Inference performance

CPU w/
Quantization

GPU
OpenGL Float16

Quantized
Fixed-point

CPU on
MobileNet V1

Pixel 3 - Single Threaded CPU

MobileNet V1

Achieved by reducing the precision of weights and activations in
your graph.

Quantization: Huge speedup
and ~4x smaller size

Optimize

import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]

tflite_quant_model = converter.convert()

Optimize

TensorFlow Lite for
microcontrollers

MCU

More than 150B microcontrollers exist globally today

What are they?

● No operating system

● Tens of KB of RAM & Flash

● Only CPU, memory & I/O peripherals

Small computer on a single circuit
IO

RAM CPU ROM

MCU

Input

MCU

Is there any sound?

Class 1

Class 2

Output Input

MCU

Is that human speech?

Class 1

Class 2

Output
Deeper

Network

Application
Processor

TensorFlow Saved Model

TensorFlow Lite Flat Buffer Format

TensorFlow Lite Interpreter

TensorFlow Lite Micro Interpreter

TensorFlow Lite for
microcontrollers

TensorFlow provides you with a

single framework to deploy on

Microcontrollers as well as phones

Example models

● Speech model (20KB)

● Image classifier (250KB) [Coming Soon]

Available now on tensorflow.org

Wrap-up

TensorFlow Extended (TFX)

Out-of-the-box components for your production model needs

Flexible orchestration and metadata

Extensible with custom components

Visit us at https://tensorflow.org/tfx and show us how you’ve used and extended TFX!

https://tensorflow.org/tfx

https://www.tensorflow.org/tfx

TensorFlow Lite

Serve models on mobile and embedded devices

Key features : Optimisation for speed and size

Makes TensorFlow ecosystem much more compelling

Visit us at https://tensorflow.org/tfx and show us how you’ve used and extended TFX!

https://tensorflow.org/tfx

Deep Learning MeetUp Group
The Group :

● MeetUp.com / TensorFlow-and-Deep-Learning-Singapore
● > 3,900 members

The Meetings :

● Next : Date TBA, hosted at Google
○ Something for Beginners
○ Something from the Bleeding Edge
○ Lightning Talks

Deep Learning Courses in Singapore
Jumpstart Course : Two days in-person + One day online

● Hands-on with real model code
● Build your own Project

Other Modules:

● Advanced Computer Vision; Advanced NLP; Self-supervised ...

Each 'module' includes :

● In-depth instruction, by practitioners
● 70%-100% funding via IMDA for SG/PR

Red Dragon AI : Intern Hunt
Opportunity to do Deep Learning “all day”

Key Features :

● Work on something cutting-edge (+ publish!)
● Location : Singapore (SG/PR FTW) and/or Remote

Action points :

● Need to coordinate timing…
● Contact Martin or Sam via LinkedIn

Questions?

