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Outline
● Machine Learning for Production

○ Part of a Bigger Picture 
● How the components are joined together
● What all the components do :

○ Data ingestion …
○ … ? ...
○ … to serving (and TFlite)

● Wrap-up



In addition to training a model ...

ML Code



… a production solution requires so much more

Configuration

Data Collection

Data Verification

Feature Extraction

Process Management Tools

Analysis Tools

Machine Resource 
Management

Serving Infrastructure

Monitoring

ML Code



Tensorflow Extended (TFX)



Powers Alphabet’s most important bets and products

Tensorflow Extended (TFX)



Libraries

Components

TFX Production Components

Data 
Validation

Feature 
Engineering

Train 
Model

Data 
Ingestion

Validate 
Model

Push If 
Good

Serve 
Model



What is a Component?



What makes a Component

Coordinates job execution

Performs the work

Updates ml.metadata



What makes a Component?

Well defined config



What makes a Component?



What makes a Component?



TFX: Metadata Store
What does it contain?



Type definitions of Artifacts and their 
Properties

What is in Metadata Store?



Type definitions of Artifacts and their 
Properties

Execution Records (Runs) of Components

What is in Metadata Store?



Type definitions of Artifacts and their 
Properties

Execution Records (Runs) of Components

Data Provenance Across All Executions

What is in Metadata Store?



Metadata-Powered 
Functionality



Metadata-Powered 
Functionality

Find out which data a model 
was trained on



Metadata-Powered 
Functionality

Compare previous model runs



Metadata-Powered 
Functionality

Carry-over state from previous 
model runs



Metadata-Powered 
Functionality

Re-use previously computed 
outputs



TFX Orchestration



Bring your own Orchestrator
Flexible runtimes run components in the proper order using 
orchestration systems such as Airflow or Kubeflow



Airflow Kubeflow Pipelines

Orchestrators and DAGs



All the Components





Component: ExampleGen

examples = csv_input(os.path.join(data_root, 'simple'))

example_gen = CsvExampleGen(input_base=examples)

Configuration

ExampleGen

Raw Data

Inputs and Outputs

CSV TF Record

Split TF 
Record Data

Training

Eval



Component: StatisticsGen

statistics_gen = 
  StatisticsGen(input_data=example_gen.outputs.examples)

Visualization

StatisticsGen

Data

ExampleGen

Statistics

ConfigurationInputs and Outputs



Analyzing Data with TensorFlow Data Validation



Component: SchemaGen

SchemaGen

Statistics

StatisticsGen

Schema

infer_schema = SchemaGen(stats=statistics_gen.outputs.output)

Visualization

ConfigurationInputs and Outputs



Component: ExampleValidator

Example
Validator

Statistics Schema

StatisticsGen SchemaGen

Anomalies 
Report

validate_stats = ExampleValidator(  
    stats=statistics_gen.outputs.output,
    schema=infer_schema.outputs.output)

Visualization

ConfigurationInputs and Outputs



Component: Transform

transform = Transform(
    input_data=example_gen.outputs.examples,
    schema=infer_schema.outputs.output,
    module_file=taxi_module_file)

for key in _DENSE_FLOAT_FEATURE_KEYS:
    outputs[_transformed_name(key)] = transform.scale_to_z_score(
        _fill_in_missing(inputs[key]))
# ...

outputs[_transformed_name(_LABEL_KEY)] = tf.where(
      tf.is_nan(taxi_fare),
      tf.cast(tf.zeros_like(taxi_fare), tf.int64),
      # Test if the tip was > 20% of the fare.
      tf.cast(
          tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

# ...

Transform

Data Schema

Transform 
Graph

Transformed 
Data

ExampleGen SchemaGen

Trainer

Code

Code

ConfigurationInputs and Outputs



Using TensorFlow Transform for Feature Engineering



Using TensorFlow Transform for Feature Engineering

Training Serving





Component: Trainer

Trainer

Data Schema

Transform SchemaGen

Evaluator

Code

Transform 
Graph

Model 
Validator Pusher

Model(s)

Highlight: SavedModel Format

TensorFlow 
Serving

TensorFlow 
Model Analysis

Train, Eval, and Inference Graphs

SignatureDefEvalSavedModel

SavedModel

Inputs and Outputs



Component: Trainer

trainer = Trainer(
    module_file=taxi_module_file,
    transformed_examples=transform.outputs.transformed_examples,
    schema=infer_schema.outputs.output,
    transform_output=transform.outputs.transform_output,
    train_steps=10000,
    eval_steps=5000,
    warm_starting=True)

Just TensorFlow :)

Trainer

Data Schema

Transform SchemaGen

Evaluator

Code

Transform 
Graph

Model 
Validator Pusher

Model(s)

Inputs and Outputs

Code

Configuration









Component: Evaluator

Evaluator

Data Model

ExampleGen Trainer

Evaluation 
Metrics

model_analyzer = Evaluator(
    examples=examples_gen.outputs.output,
    eval_spec=taxi_eval_spec,
    model_exports=trainer.outputs.output)

Visualization

ConfigurationInputs and Outputs



Component: ModelValidator

● Validate using current eval data
● “Next-day eval”, validate using unseen data

Model 
Validator

Data

ExampleGen Trainer

Validation 
Outcome

Model (x2)

model_validator = ModelValidator(
    examples=examples_gen.outputs.output,
    model=trainer.outputs.output,
    eval_spec=taxi_mv_spec)

ConfigurationInputs and Outputs

Configuration Options



Component: Pusher

Validation 
Outcome

Pusher

Model
Validator

Pusher
PusherDeployment 

Options

pusher = Pusher(  
    model_export=trainer.outputs.output,
    model_blessing=model_validator.outputs.blessing,
    serving_model_dir=serving_model_dir)

Block push on validation outcome

Push destinations supported today
● Filesystem (TensorFlow Lite, TensorFlow JS)
● TensorFlow Serving

ConfigurationInputs and Outputs



Serve the Model !





TensorFlow Serving
Production-Ready

Used for years at Google, millions of QPS

Scale in minutes

Dynamic version refresh



TensorFlow Serving
High-Performance

Low-latency

Request Batching

Traffic Isolation



$ apt-get install tensorflow-model-server

$ tensorflow_model_server 

   --port=8501 

   --model_name=chicago_taxi 

   --model_base_path='/path/to/savedmodel'

Deploy a REST API for your model in minutes ..

$ docker run -p 8501:8501 \

    -v '/path/to/savedmodel':/models/chicago_taxi 

-e MODEL_NAME=chicago_taxi -t tensorflow/serving

... or locally on 

 your host ...

... using 
Docker ...



What is 
TensorFlow Lite?



TensorFlow Lite is a 
framework for deploying ML 
on mobile devices and 
embedded systems



Have now deployed TensorFlow Lite in production. 

More than 2B devices 
globally.

Source: https://medium.com/tensorflow/recap-of-the-2019-tensorflow-dev-summit-1b5ede42da8d

https://medium.com/tensorflow/recap-of-the-2019-tensorflow-dev-summit-1b5ede42da8d


Classification

Prediction

Recognition

Text to Speech

Speech to Text

Object detection

Object location

OCR

Gesture recognition 

Facial modelling 

Segmentation

Clustering

Compression

Super resolution

Translation

Voice synthesis

Video generation

Text generation

Audio generation

AudioImageSpeechText Content



Easy to get started

1

Jump start

Use our pretrained 
models or retrain 

2

Custom model

Deploy your custom 
model

3

Performance

Benchmark, validate & 
accelerate your models.

4

Optimize

Try our Model 
Optimization Toolkit



TensorFlow Lite powers 
ML Kit

● ML Kit is out-of-the-box proprietary models 
that you can run on device



Converting your model Custom Model

TensorFlow
(estimator or keras)

Saved Model TF Lite
Model

TF Lite
Converter



import tensorflow as tf

converter = 
tf.lite.TFLiteConverter.from_saved_model(saved_model_dir
)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)

TensorFlow 1.X



● Limited ops

● Unsupported semantics (i.e. control-flow in RNNs)

Conversion is 
sometimes hard

Custom Model



Goal: As fast as possible on all hardware (CPU, GPU, DSP, NPU)

Get your models running 
as fast as possible

Performance



CPU 
83 ms

CPU 1.8x 
47 ms

GPU 5.5x
15 ms

EdgeTPU 42x
2 ms

Inference performance

CPU w/ 
Quantization

GPU 
OpenGL Float16

Quantized 
Fixed-point

CPU on 
MobileNet V1

Pixel 3 - Single Threaded CPU

MobileNet V1



Achieved by reducing the precision of weights and activations in 
your graph.

Quantization: Huge speedup 
and ~4x smaller size

Optimize



import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)

converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE]

tflite_quant_model = converter.convert()

Optimize



TensorFlow Lite for 
microcontrollers

MCU

More than 150B microcontrollers exist globally today



What are they?

● No operating system

● Tens of KB of RAM & Flash

● Only CPU, memory & I/O peripherals

Small computer on a single circuit
IO

RAM CPU ROM

MCU



Input

MCU

Is there any sound?

Class 1

Class 2

Output Input

MCU

Is that human speech?

Class 1

Class 2

Output
Deeper 

Network

Application
Processor



TensorFlow Saved Model

TensorFlow Lite Flat Buffer Format

TensorFlow Lite Interpreter

TensorFlow Lite Micro Interpreter

TensorFlow Lite for 
microcontrollers

TensorFlow provides you with a 

single framework to deploy on

Microcontrollers as well as phones



Example models

● Speech model (20KB)

● Image classifier (250KB) [Coming Soon]

Available now on tensorflow.org



Wrap-up



TensorFlow Extended (TFX)

Out-of-the-box components for your production model needs

Flexible orchestration and metadata

Extensible with custom components

Visit us at https://tensorflow.org/tfx and show us how you’ve used and extended TFX!

https://tensorflow.org/tfx


https://www.tensorflow.org/tfx



TensorFlow Lite

Serve models on mobile and embedded devices

Key features : Optimisation for speed and size

Makes TensorFlow ecosystem much more compelling

Visit us at https://tensorflow.org/tfx and show us how you’ve used and extended TFX!

https://tensorflow.org/tfx




Deep Learning MeetUp Group
The Group :

● MeetUp.com / TensorFlow-and-Deep-Learning-Singapore
● > 3,900 members

The Meetings :

● Next : Date TBA, hosted at Google
○ Something for Beginners
○ Something from the Bleeding Edge
○ Lightning Talks



Deep Learning Courses in Singapore
Jumpstart Course : Two days in-person + One day online

● Hands-on with real model code
● Build your own Project

Other Modules:

● Advanced Computer Vision; Advanced NLP; Self-supervised ...

Each 'module' includes :

● In-depth instruction, by practitioners
● 70%-100% funding via IMDA for SG/PR



Red Dragon AI : Intern Hunt
Opportunity to do Deep Learning “all day”

Key Features :

● Work on something cutting-edge (+ publish!)
● Location : Singapore (SG/PR FTW) and/or Remote

Action points :

● Need to coordinate timing…
● Contact Martin or Sam via LinkedIn



Questions?


