

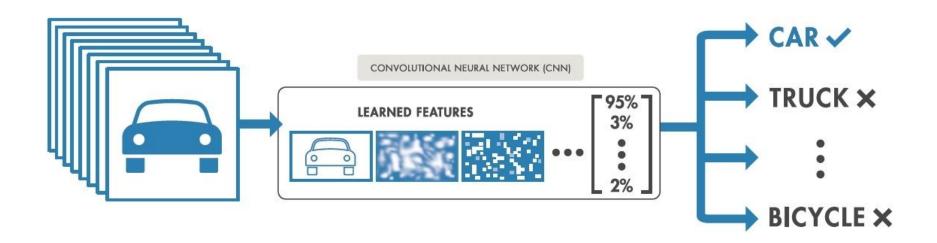
TensorFlow & Deep Learning SG

First steps in Deep Learning with TensorFlow 2.0 : CNNs

Martin Andrews

Google Developer Expert, Machine Learning

Red Dragon Al


Outline

- Image classification : The problem
- What are CNNs?
 - Code-first explanation
- Why is a CNN model trainable?
- Let's train a model
 - Standard thing
 - Less standard thing
- Wrap-up

The Problem

Image Classification

What are CNNs?

Convolutional Neural Networks

- Translational invariance
 - ... yada yada yada ...

• Instead, let's understand what these things do

We have the layers...

How does the model learn?

- We need a few more pieces :
 - List of Parameters
 - Training data (i.e. correct answers)
 - Optimisation
 - Testing

List of Parameters

- We've seen this already :
 - Each Conv2d has a kernel (+ bias term)
 - (ReLUs and SoftMax don't need parameters)
 - ... that's it

Training Data

- We'll see this soon :
 - Lots of images and their correct classes

- Split the data into 'training' and 'test' portions
 - Ensures that model works on unseen data

Optimisation

- This is a bit more involved...
- Key piece of mathematics :
 - Measure the model's error (= 'loss')
 - Want to reduce the 'loss' to improve model
 - But 'loss' depends on every parameter
 - Repeatedly nudge each parameter in correct direction
 - Model should improve (may be slow)

Testing

- We kept some testing data to one side :
 - \circ $\,$ (more images and their correct classes)

- We'll see whether the trained model works
 - \circ (fingers crossed)

Code (again)

Wrap-Up

- Basic CNN components shown
- Basic CNN model built

(Hands-waved about training)

- Model trained on 2 datasets
- Success!

Questions?

Deep Learning MeetUp Group

The Group:

- MeetUp.com / TensorFlow-and-Deep-Learning-Singapore
- > 3,600 members

The Meetings :

- Next = ?-May, hosted at Google
 - Something for Beginners
 - Something from the Bleeding Edge
 - Lightning Talks

Deep Learning JumpStart Workshop

April 25+26

- Hands-on with real model code
- Build your own Project

Action points :

- http:// bit.ly / jumpstart-april-2019
- Cost is heavily subsidised for SC/PR

Advanced Deep Learning Courses

Module #1: JumpStart (see previous slide) or GitHub

Each 'module' will include :

- In-depth instruction, by practitioners
- Individual Projects
- 70%-100% funding via IMDA for SG/PR

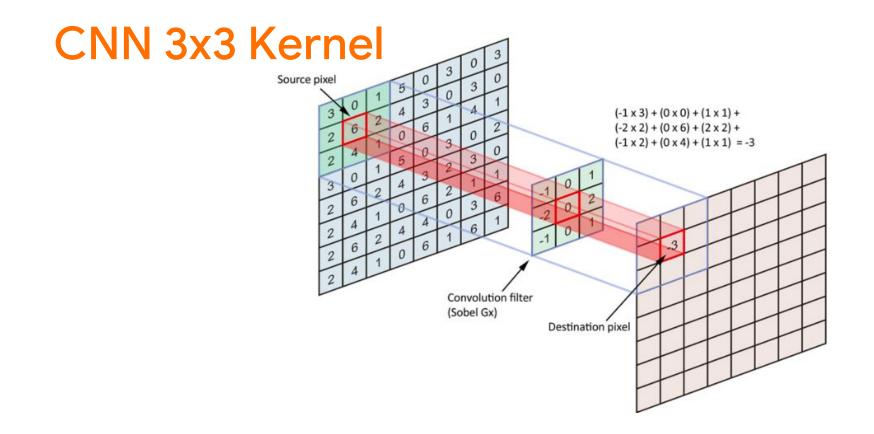
Action points :

• Stay informed: http://bit.ly/rdai-courses-2019

Red Dragon Al : Intern Hunt

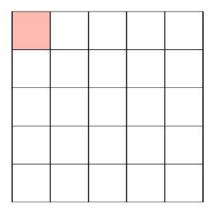
Opportunity to do Deep Learning "all day"

Key Features :

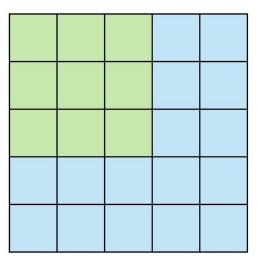

- Work on something cutting-edge (+ publish!)
- Location : Singapore (SG/PR FTW) and/or Remote

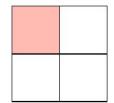
Action points :

- Need to coordinate timing...
- Contact Martin or Sam via LinkedIn



CNN stride=1 (with padding)




Stride 1 with Padding

Feature Map

CNN stride=2 (no padding)

Stride 2

Feature Map