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Why TensorFlow Lite?



ML runs in many places

● Access to more data
● Fast and closely knit 

interactions
● Privacy preserving



Creates many challenges

● Reduced compute power
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● Reduced compute power
● Limited memory



Creates many challenges

● Reduced compute power
● Limited memory
● Battery constraints



Simplifying ML on-device 
TensorFlow Lite makes these challenges much easier!



What can I do with it?



Many use cases

Classification

Prediction

Text Speech Image Audio Content

Recognition

Text to Speech

Speech to Text

Object detection

Object Location

OCR

Gesture recognition 

Facial modelling 

Segmentation

Clustering

Compression

Super Resolution

Translation

Voice Synthesis

Video generation

Text generation

Audio generation



Who is using it?



>2B mobile devices
Have TensorFlow Lite deployed on them in production 



Photos GBoard Gmail Nest

NetEase iQiyi AutoML

And 
many 

more...

Assistant

ML Kit

Some of the users ...



Google Assistant is on 
1B+ devices
Wide range of devices: High/low end, arm, x86, battery 
powered, plugged in, many operating systems

Phones Speakers Cars

TVs Laptops Wearables Others

Smart Displays



Key Speech On-Device 
Capabilities
● “Hey Google” Hotword with VoiceMatch

○ Tiny memory and computation footprint, 
running continuously

○ Extremely latency sensitive

● On-device speech recognition
○ High computation running in shorter bursts



Online Education Brand with the largest numbers 
of users in China 
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800 million 
Users in total

22 million 
DAU 



Youdao Applications 
with TensorFlow Lite
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Youdao Dictionary Youdao Translator U-Dictionary 



Youdao On-Device AI 
Translation & OCR

● Applied in Youdao dictionary and 
translator apps

● Offline photo translation speed 
improved 30-40%

● Support Realtime AR translation
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Model conversion
The conversion flow to TensorFlow Lite is simple ...

TensorFlow 
(estimator or Keras)

Saved 
Model

TF Lite 
Converter

TF Lite
Model



Model conversion
… however there are points of failure

● Limited ops
● Unsupported semantics (e.g. 

control-flow in RNNs)



Model conversion
TensorFlow Select

Available now
● Enables hundreds more ops from TensorFlow on CPU.
● Caveat: binary size increase (~6MB compressed).

In the pipeline
● Selective registration
● Improved performance



Model conversion
Control flow support

In the pipeline

Control flow are core to many ops (e.g. RNNs) and 
graphs. Thus we are adding support for:

● Loops
● Conditions



CPU 1.9x 
64ms

GPU 7.7x
16 ms

Edge TPU 62x
2 ms

Inference performance

CPU w/ 
Quantization

Flow 
OpenGL 16

Quantized 
Fixed-point

CPU 
124 ms

CPU on 
MobileNet V1

Pixel 2 - Single Threaded CPU

MobileNet V1



Benchmarking
Benchmarking and profiling

Available
Improvements to the Model Benchmark tool:

● Support for threading
● Per op profiling
● Support for Android NN API



Benchmarking
Per-op profiling breakdown



Benchmarking
Profiling summary



What is a delegate?
Operation

Kernels

Operation
Kernels

Accelerator
Delegate

Interpreter
Core



Fast execution
Android Neural Network API delegate

Enables hardware supported by the Android NN API



Fast execution
GPU delegate

Preview available!

● 2–7x faster than the floating point 
CPU implementation

● Adds ~250KB to binary size 
(Android/iOS).



Fast execution
GPU delegate

In the pipeline

● Expand coverage of operations
● Further optimize performance
● Evolve and finalize the APIs

Make it generally available!



Fast execution
Edge-TPU delegate

Enables next generation ML hardware!

● High performance
● Small physical and power footprint

Available in Edge TPU development kit



Optimization

Make your models even smaller 
and faster.



Optimization
Available In the pipeline

Post-training 
quantization (CPU)

Keras-based quantized 
training (CPU/NPU)

Post-training 
quantization (CPU/NPU)

Model optimization 
toolkit

Keras-based 
connection pruning

Other 
optimizations

Quantization



Optimization
Quantization

New tools

● Post-training quantization 
with float & fixed point

● Great for CPU 
deployments!



Optimization
Quantization

Benefits

● 4x reduction in model sizes
● Models, which consist primarily of convolutional 

layers, get 10–50% faster execution (CPU)
● Fully-connected & RNN-based models get up to 3x 

speed-up (CPU)



Optimization
Quantization

In the pipeline

● Training with quantization Keras-based API
● Post-training quantization with fixed point math 

only

Even better performance on CPU

Plus enable many NPUs!



(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Keras-based quantization API



(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
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(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  quantize.Quantize(tf.keras.layers.Dense(512, activation=tf.nn.relu)),
  tf.keras.layers.Dropout(0.2),
  quantize.Quantize(tf.keras.layers.Dense(10, activation=tf.nn.softmax))
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Keras-based quantization API



Optimization
Quantization (post-training)

TensorFlow 
(estimator or Keras)

Saved 
Model

TF Lite 
Converter

TF Lite
Model



Optimization
Quantization (post-training)

TensorFlow 
(estimator or Keras)

Saved 
Model 

+
Calibration

Data

TF Lite 
Converter

TF Lite
Model



Optimization
Connection pruning

What does it mean?

● Drop connections during training.
● Dense tensors will now be sparse 

(filled with zeros).



Optimization
Connection pruning

Benefits

● Smaller models. Sparse tensors can 
be compressed.

● Faster models. Less operations to 
execute.



Optimization
Connection pruning

Coming soon

● Training with connection pruning in Keras-based API 
(compression benefits)

In the pipeline

● Inference support for sparse models (speed-ups on CPU 
and selected NPUs)



Optimization
Pruning results

● Negligible 
accuracy loss at 
50% sparsity

● Small accuracy 
loss at 75%



Model repository
Added new model repository

In depth sample applications & tutorials for:

● Image classification
● Object detection
● Pose estimation
● Segmentation
● Smart reply



TF Mobile Deprecated

● Provided 6+ months of notice

● Limiting developer support in favor 
of TensorFlow Lite

● Still available for training on Github



TensorFlow Lite for 

Microcontrollers
Smaller, cheaper & wider range of devices



What am I talking about?
Tiny models on tiny computers!

● Microcontrollers are everywhere

● Speech researchers were 
pioneers

● Models just tens of kilobytes



Here’s one I have in my pocket
Get ready for a live demo!

https://www.sparkfun.com/products/15170

384KB RAM, 1MB Flash, $15

Low single-digit milliwatt power usage

Days on a coin battery!

https://www.sparkfun.com/products/15170


Why is this useful?
Running entirely on-device

Tiny constraints:

● It’s using a 20KB model

● Runs using less than 100KB of 
RAM and 80KB of Flash



What is Coral?

● Coral is a platform for creating products with 
on-device ML acceleration.

● Our first products feature Google’s Edge TPU in 
SBC and USB accessory forms.



Edge TPU

A Google-designed ASIC that lets you run 
inference on-device:

● Very fast inference speed (object detection in less than 15ms)
● Enables greater data privacy
● No reliance on a network connection
● Runs inference with TensorFlow Lite

Enables unique workloads and new applications



Coral Dev Board
CPU i.MX 8M SoC w/ Quad-core A53

GPU Integrated GC7000 Lite GPU

TPU Google Edge TPU

RAM Memory 1GB LPDDR4 RAM

Flash Memory 8 GB eMMC

Security/Crypto eMMC secure block for TrustZone
MCHP ATECC608A Crypto Chip

Power 5V 3A via Type-C connector

Connectors USB-C, RJ45, 3.5mm TRRS, HDMI

Supported OS Mendel Linux (Debian derivative)
Android

Supported ML TensorFlow Lite



Coral Accelerator

TPU Google Edge TPU

Power 5V 3A via Type-C connector

Connectors USB 3.1 (gen 1) via USB Type-C

Supported OS Debian 6.0 or higher
Other Debian Derivatives

Supported Architectures x86_64
ARMv8

Supported ML TensorFlow Lite



They're available now at coral.withgoogle.com

These actually exist !

https://coral.withgoogle.com/


Get it. Try it.
Code: github.com/tensorflow/tensorflow

Docs: tensorflow.org/lite/ 

Discuss: tflite@tensorflow.org mailing list

http://github.com/tensorflow/tensorflow
http://tensorflow.org/mobile/tflite/
mailto:tflite@tensorflow.org


Deep Learning MeetUp Group
The Group :

● MeetUp.com / TensorFlow-and-Deep-Learning-Singapore
● > 3,500 members

The Meetings :

● Next = 16-April, hosted at Google
○ Something for Beginners
○ Something from the Bleeding Edge
○ Lightning Talks



Deep Learning JumpStart Workshop

This Saturday + (Tues & Thurs evening next week)

● Hands-on with real model code
● Build your own Project

Action points :

● http:// bit.ly / jump-start-march-2019
● Cost is heavily subsidised for SC/PR



Advanced Deep Learning Courses
Module #1 : JumpStart (see previous slide)

Each 'module' will include :

● In-depth instruction, by practitioners
● Individual Projects
● 70%-100% funding via IMDA for SG/PR

Action points :

● Stay informed :   http://bit.ly/rdai-courses-2019



Red Dragon AI : Intern Hunt
Opportunity to do Deep Learning “all day”

Key Features :

● Work on something cutting-edge (+ publish!)
● Location : Singapore (SG/PR FTW) and/or Remote

Action points :

● Need to coordinate timing…
● Contact Martin or Sam via LinkedIn




