
TensorFlow Lite

Lightweight cross-platform solution for mobile
and embedded devices

Martin Andrews

Google Developer Expert, Machine Learning

Red Dragon AI

Why TensorFlow Lite?

ML runs in many places

● Access to more data
● Fast and closely knit

interactions
● Privacy preserving

Creates many challenges

● Reduced compute power

Creates many challenges

● Reduced compute power
● Limited memory

Creates many challenges

● Reduced compute power
● Limited memory
● Battery constraints

Simplifying ML on-device
TensorFlow Lite makes these challenges much easier!

What can I do with it?

Many use cases

Classification

Prediction

Text Speech Image Audio Content

Recognition

Text to Speech

Speech to Text

Object detection

Object Location

OCR

Gesture recognition

Facial modelling

Segmentation

Clustering

Compression

Super Resolution

Translation

Voice Synthesis

Video generation

Text generation

Audio generation

Who is using it?

>2B mobile devices
Have TensorFlow Lite deployed on them in production

Photos GBoard Gmail Nest

NetEase iQiyi AutoML

And
many

more...

Assistant

ML Kit

Some of the users ...

Google Assistant is on
1B+ devices
Wide range of devices: High/low end, arm, x86, battery
powered, plugged in, many operating systems

Phones Speakers Cars

TVs Laptops Wearables Others

Smart Displays

Key Speech On-Device
Capabilities
● “Hey Google” Hotword with VoiceMatch

○ Tiny memory and computation footprint,
running continuously

○ Extremely latency sensitive

● On-device speech recognition
○ High computation running in shorter bursts

Online Education Brand with the largest numbers
of users in China

28

800 million
Users in total

22 million
DAU

Youdao Applications
with TensorFlow Lite

29

Youdao Dictionary Youdao Translator U-Dictionary

Youdao On-Device AI
Translation & OCR

● Applied in Youdao dictionary and
translator apps

● Offline photo translation speed
improved 30-40%

● Support Realtime AR translation

30

Model conversion
The conversion flow to TensorFlow Lite is simple ...

TensorFlow
(estimator or Keras)

Saved
Model

TF Lite
Converter

TF Lite
Model

Model conversion
… however there are points of failure

● Limited ops
● Unsupported semantics (e.g.

control-flow in RNNs)

Model conversion
TensorFlow Select

Available now
● Enables hundreds more ops from TensorFlow on CPU.
● Caveat: binary size increase (~6MB compressed).

In the pipeline
● Selective registration
● Improved performance

Model conversion
Control flow support

In the pipeline

Control flow are core to many ops (e.g. RNNs) and
graphs. Thus we are adding support for:

● Loops
● Conditions

CPU 1.9x
64ms

GPU 7.7x
16 ms

Edge TPU 62x
2 ms

Inference performance

CPU w/
Quantization

Flow
OpenGL 16

Quantized
Fixed-point

CPU
124 ms

CPU on
MobileNet V1

Pixel 2 - Single Threaded CPU

MobileNet V1

Benchmarking
Benchmarking and profiling

Available
Improvements to the Model Benchmark tool:

● Support for threading
● Per op profiling
● Support for Android NN API

Benchmarking
Per-op profiling breakdown

Benchmarking
Profiling summary

What is a delegate?
Operation

Kernels

Operation
Kernels

Accelerator
Delegate

Interpreter
Core

Fast execution
Android Neural Network API delegate

Enables hardware supported by the Android NN API

Fast execution
GPU delegate

Preview available!

● 2–7x faster than the floating point
CPU implementation

● Adds ~250KB to binary size
(Android/iOS).

Fast execution
GPU delegate

In the pipeline

● Expand coverage of operations
● Further optimize performance
● Evolve and finalize the APIs

Make it generally available!

Fast execution
Edge-TPU delegate

Enables next generation ML hardware!

● High performance
● Small physical and power footprint

Available in Edge TPU development kit

Optimization

Make your models even smaller
and faster.

Optimization
Available In the pipeline

Post-training
quantization (CPU)

Keras-based quantized
training (CPU/NPU)

Post-training
quantization (CPU/NPU)

Model optimization
toolkit

Keras-based
connection pruning

Other
optimizations

Quantization

Optimization
Quantization

New tools

● Post-training quantization
with float & fixed point

● Great for CPU
deployments!

Optimization
Quantization

Benefits

● 4x reduction in model sizes
● Models, which consist primarily of convolutional

layers, get 10–50% faster execution (CPU)
● Fully-connected & RNN-based models get up to 3x

speed-up (CPU)

Optimization
Quantization

In the pipeline

● Training with quantization Keras-based API
● Post-training quantization with fixed point math

only

Even better performance on CPU

Plus enable many NPUs!

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Keras-based quantization API

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Keras-based quantization API

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(),
 quantize.Quantize(tf.keras.layers.Dense(512, activation=tf.nn.relu)),
 tf.keras.layers.Dropout(0.2),
 quantize.Quantize(tf.keras.layers.Dense(10, activation=tf.nn.softmax))
])
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Keras-based quantization API

Optimization
Quantization (post-training)

TensorFlow
(estimator or Keras)

Saved
Model

TF Lite
Converter

TF Lite
Model

Optimization
Quantization (post-training)

TensorFlow
(estimator or Keras)

Saved
Model

+
Calibration

Data

TF Lite
Converter

TF Lite
Model

Optimization
Connection pruning

What does it mean?

● Drop connections during training.
● Dense tensors will now be sparse

(filled with zeros).

Optimization
Connection pruning

Benefits

● Smaller models. Sparse tensors can
be compressed.

● Faster models. Less operations to
execute.

Optimization
Connection pruning

Coming soon

● Training with connection pruning in Keras-based API
(compression benefits)

In the pipeline

● Inference support for sparse models (speed-ups on CPU
and selected NPUs)

Optimization
Pruning results

● Negligible
accuracy loss at
50% sparsity

● Small accuracy
loss at 75%

Model repository
Added new model repository

In depth sample applications & tutorials for:

● Image classification
● Object detection
● Pose estimation
● Segmentation
● Smart reply

TF Mobile Deprecated

● Provided 6+ months of notice

● Limiting developer support in favor
of TensorFlow Lite

● Still available for training on Github

TensorFlow Lite for

Microcontrollers
Smaller, cheaper & wider range of devices

What am I talking about?
Tiny models on tiny computers!

● Microcontrollers are everywhere

● Speech researchers were
pioneers

● Models just tens of kilobytes

Here’s one I have in my pocket
Get ready for a live demo!

https://www.sparkfun.com/products/15170

384KB RAM, 1MB Flash, $15

Low single-digit milliwatt power usage

Days on a coin battery!

https://www.sparkfun.com/products/15170

Why is this useful?
Running entirely on-device

Tiny constraints:

● It’s using a 20KB model

● Runs using less than 100KB of
RAM and 80KB of Flash

What is Coral?

● Coral is a platform for creating products with
on-device ML acceleration.

● Our first products feature Google’s Edge TPU in
SBC and USB accessory forms.

Edge TPU

A Google-designed ASIC that lets you run
inference on-device:

● Very fast inference speed (object detection in less than 15ms)
● Enables greater data privacy
● No reliance on a network connection
● Runs inference with TensorFlow Lite

Enables unique workloads and new applications

Coral Dev Board
CPU i.MX 8M SoC w/ Quad-core A53

GPU Integrated GC7000 Lite GPU

TPU Google Edge TPU

RAM Memory 1GB LPDDR4 RAM

Flash Memory 8 GB eMMC

Security/Crypto eMMC secure block for TrustZone
MCHP ATECC608A Crypto Chip

Power 5V 3A via Type-C connector

Connectors USB-C, RJ45, 3.5mm TRRS, HDMI

Supported OS Mendel Linux (Debian derivative)
Android

Supported ML TensorFlow Lite

Coral Accelerator

TPU Google Edge TPU

Power 5V 3A via Type-C connector

Connectors USB 3.1 (gen 1) via USB Type-C

Supported OS Debian 6.0 or higher
Other Debian Derivatives

Supported Architectures x86_64
ARMv8

Supported ML TensorFlow Lite

They're available now at coral.withgoogle.com

These actually exist !

https://coral.withgoogle.com/

Get it. Try it.
Code: github.com/tensorflow/tensorflow

Docs: tensorflow.org/lite/

Discuss: tflite@tensorflow.org mailing list

http://github.com/tensorflow/tensorflow
http://tensorflow.org/mobile/tflite/
mailto:tflite@tensorflow.org

Deep Learning MeetUp Group
The Group :

● MeetUp.com / TensorFlow-and-Deep-Learning-Singapore
● > 3,500 members

The Meetings :

● Next = 16-April, hosted at Google
○ Something for Beginners
○ Something from the Bleeding Edge
○ Lightning Talks

Deep Learning JumpStart Workshop

This Saturday + (Tues & Thurs evening next week)

● Hands-on with real model code
● Build your own Project

Action points :

● http:// bit.ly / jump-start-march-2019
● Cost is heavily subsidised for SC/PR

Advanced Deep Learning Courses
Module #1 : JumpStart (see previous slide)

Each 'module' will include :

● In-depth instruction, by practitioners
● Individual Projects
● 70%-100% funding via IMDA for SG/PR

Action points :

● Stay informed : http://bit.ly/rdai-courses-2019

Red Dragon AI : Intern Hunt
Opportunity to do Deep Learning “all day”

Key Features :

● Work on something cutting-edge (+ publish!)
● Location : Singapore (SG/PR FTW) and/or Remote

Action points :

● Need to coordinate timing…
● Contact Martin or Sam via LinkedIn

